Skip to main content
Log in

Investigating cross-contamination of aquifers

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Shallow aquifers can cross-contaminate deeper aquifers through penetration of an intervening aquitard, via sandy intervals in the aquitard, along well casings, across long well screens, or around aquitard pinchouts. Distinguishing among these potential pathways requires the use of evaluation tools that may support or eliminate certain pathways. These tools include groundwater gradient and aquitard penetration calculations, aquifer pumping test interpretation techniques, chemical concentration plots and statistical methods, hydraulic conductivity-based travel time calculations, pumping-concentration tests, methods for evaluating leaky wells, and methods for evaluating aquitard continuity. Based on analysis of several of these techniques at three sites experiencing aquifer cross-contamination, the authors conclude that calculation of flow rates for various pathways is the single most useful method to confirm or refute specific pathways. Evaluation of leaky wells and aquitard continuity generally must be coupled with other tools to adequately test specific pathways. While fingerprinting, statistical analysis or ratio analysis of contaminants from various sources and receptors was not completed for any of the evaluated sites, the authors believe that these techniques have strong potential for confirming or eliminating pathways. Future research in this area is suggested. Furthermore, the interpretation of pumping-concentration tests is not well developed and needs further assessment.

Résumé

Les aquifères de surface peuvent contaminer les aquifères plus profonds à travers un aquitard, un intersection sableuse dans l’aquitard, le long des forages et de leur crépines, ou de la terminaison biseautée des aquitards. Distinguer et sélectionner ces différents modes de contamination nécessite l’utilisation d’outils d’évaluation. Ces outils incluent le gradient d’écoulement des eaux souterraines et le calcul de pénétration des aquitards, les techniques d’interprétation des essais de pompage, les méthodes d’interprétation chimiques et de traitement statistique, les calculs des temps de transferts sur base de la conductivité, les tests de pompage couplé aux analyses de concentration, les méthodes pour évaluer l’infiltration directe alimentant les forages, et les méthodes permettant d’évaluer la continuité des aquitards. Basé sur l’analyse de plusieurs de ces techniques sur trois sites expérimentales présentant des contaminations transversale, les auteurs concluent que le calcul des rapports d’écoulement est la méthode la plus simple pour confirmer ou refuser les voies spécifiques. Alors que le traçage, les analyses statistiques et les analyses de la contamination provenant de différentes sources et récepteurs n’était pas complètes pour la plus part des différents sites évalués n’étaient pas compléments certains, les auteurs croient que ces techniques ont un potentiel fort pour confirmer ou éliminer ces techniques. Des recherches futures dans cette zone est suggérée. Par ailleurs, l’interprétation des tests de pompage couplés à l’analyse des concentrations n’est pas développée et nécessite de meilleurs estimations.

Resumen

Acuíferos someros pueden ocasionar contaminación transversal de acuíferos profundos mediante la penetración de un acuitardo intermedio, a través de intervalos arenosos en el acuitardo, a lo largo del revestimiento de pozos, o en las inmediaciones de lentes de acuitardos. Para distinguir entre estas trayectorias potenciales se requiere el uso de herramientas de evaluación que pueden apoyar o eliminar ciertas trayectorias. Estas herramientas incluyen cálculos de gradientes de agua subterránea y penetración de acuitardos, técnicas de interpretación de pruebas de bombeo de acuíferos, diagramas de concentración química y métodos estadísticos, estimaciones de conductividad hidráulica en base al tiempo de viaje, pruebas de concentración de bombeo, métodos para evaluar pozos con fugas, y métodos para evaluar la continuidad de acuitardos. Basándose en el análisis de varias de estas técnicas en tres sitios que experimentan contaminación transversal de acuíferos, los autores concluyen que la estimación de ritmos de flujo para varias trayectorias es el único método más útil para confirmar o rechazar trayectorias de flujo específicas. La evaluación de pozos con fugas y continuidad de acuitardos generalmente debe estar acompañada con otras herramientas para probar adecuadamente trayectorias específicas. Aunque no se completó para ninguno de los sitios evaluados técnicas de huellas, análisis estadístico o análisis de relaciones de contaminantes de varias fuentes y receptores, los autores creen que estas técnicas tienen fuerte potencial en la confirmación o eliminación de trayectorias. Se sugiere investigación futura en esta área. Además, la interpretación de pruebas de concentración de bombeo no se ha desarrollado bien y necesita evaluación posterior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–C
Fig. 4A–C
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abriola LM, Pinder GF (1985) A multiphase approach to the modeling of porous media contamination by organic compounds. 2. Numerical simulation. Water Resources Res 16:19–26

    Google Scholar 

  • Aller L (1984) Methods for determining the location of abandoned wells, EPA-600/2–83/123. US Environmental Protection Agency, Ada, Oklahoma

  • Alther GA (1979) A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17:556–561

    Google Scholar 

  • Back W (1966) Hydrochemical facies and groundwater flow patterns in northern part of Atlantic coastal plain. Washington, DC, US Geol Surv Prof Pap 498-A

  • Bethune DN, Farvolden RN, Ryan MC, Guzman AL (1996) Industrial contamination of a municipal water-supply lake by induced reversal of ground-water flow, Managua, Nicaragua. Ground Water 34:699–708

    Google Scholar 

  • Cardimona S, Clement WP, Kadinsky-Cade K (1998) Seismic reflection and ground penetrating radar imaging of a shallow aquifer. Geophysics 63:1310–1317

    Article  Google Scholar 

  • Clement WP, Cardimona S, Endres AL, Kadinsky-Cade K (1997) Site characterization at the groundwater remediation field laboratory. Lead Edge Nov:1617–1621

    Google Scholar 

  • Dames & Moore (1991) Remedial investigation report, Fort Ord landfills, Fort Ord, California, for U.S. Army Corps of Engineers. Dames & Moore, Consult Rep

  • Douglas GS, McMillen S (1996) The stability and utility of diagnostic ratio hydrocarbon fingerprinting for soils contaminated with petroleum hydrocarbons, AAPG/SEPM Annu Meet Abstr 5:38–39

  • Elliott AL (1984) Ground-water conditions and shallow test-well information in the eastern half of Merced County, California, 1977–82. US Geol Surv Water Resources Inv Rep 83-4081

  • Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element geochemistry, multivariate statistics, and geographical information system. Math Geol 32:943–968

    Google Scholar 

  • Faust CR (1985) Transport of immiscible fluids within and below the unsaturated zone: a numerical model. Water Resources Res 21:587–597

    Google Scholar 

  • Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey

  • Fryberger JS, Tinlin RM (1984) Pollution potential from injection wells via abandoned wells. In: Fairchild DM (ed) Proc 1st Natl Conf Abandoned Wells: Problems and Solutions. Environmental and Ground Water Institute, University of Oklahoma, Norman, Oklahoma, pp 84–117

  • Gass TE, Lehr JH, Heiss HW (1977) Impact of abandoned wells on ground water. US Environmental Protection Agency, Washington, DC, Rep EPA/600/3-77-095

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of the graphical and multivariate statistical methods used for classification of water-chemistry data. Hydrogeol J 10:455–474

    Google Scholar 

  • Izzo VJ (1989) Dry cleaners, a major source of PCE in the ground water. Central Valley Regional Water Quality Control Board Rep 19 September 1989

  • Jaquet JM, Froidevoux R, Verned JP (1975) Comparison of automatic classification methods applied to lake geochemical samples. Math Geol 7:237–265

    Google Scholar 

  • Javandel I, Tsang CF, Witherspoon PA, Morganwalp D (1988) Hydrologic detection of abandoned wells near proposed injection wells for hazardous waste disposal. Water Resources Res 24:261–270

    Google Scholar 

  • Kueper BH, Frind EO (1991) Two-phase flow in heterogeneous porous media. 2. Model application. Water Resources Res 27:1059–1070

    Google Scholar 

  • Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resources Res 31:1871–1882

    Google Scholar 

  • Lin C, Pinder GF, Wood EF (1982) Water resources program, Princeton University, Princeton, New Jersey, Rep 83-WR-2

  • Lindenberg KA (1997) Down the drain: a ground penetrating radar (GPR) survey of a trichloroethylene (TCE)-contaminated site in Camben County, New Jersey. BSc Thesis, Princeton University, Princeton, New Jersey

    Google Scholar 

  • Locke RA (1994) Immediate pumping effects on inorganic water chemistry and nitrate stratification in the Iowa River alluvial aquifer near Marengo, Iowa. MSc Thesis, University of Iowa, Iowa City, Iowa

  • Luhdorff & Scalmanini (1987) Analysis of wells 3A, 3B, and 5, City of Merced, California. Luhdorff & Scalmanini Consult Rep

  • Lusczynski NJ (1961) Head and flow in ground water of variable density. J Geophys Res 66:4247–4256

    Google Scholar 

  • Mariner PE, Holzmer FJ, Jackson RE, White JE, Wahl AS, Wolf FG (1997) Fingerprinting arsenic contamination in the sediments of the Hylebos Waterway, Commencement Bay superfund site, Tacoma, Washington. Environ Eng Geosci 3:359–368

    Google Scholar 

  • McCray JE, Falta RW (1997) Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water 35:99–110

    Google Scholar 

  • Meiri D (1989) A tracer test for detecting cross contamination along a monitoring well column. Ground Water Monitor Rev 9:78–81

    Google Scholar 

  • Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: properties, models, remediation, and characterization. J Contam Hydrol 6:107–163

    Google Scholar 

  • Moore DJ (1991) The delineation of a surficial aquitard in Calvert City, Kentucky using electrical resistivity and borehole information. MSc Thesis, University of Kentucky, Lexington, Kentucky

  • Neuman SP, Witherspoon PA (1969) Theory of flow in a confined two-aquifer system. Water Resources Res 5:803–816

    Google Scholar 

  • Neuman SP, Witherspoon PA (1972) Field determination of the hydraulic properties of leaky multiple-aquifer systems. Water Resources Res 8:1284–1298

    Google Scholar 

  • Oolman T, Godard ST, Pope GA, Jin M, Kirchner K (1995) DNAPL flow behavior in a contaminated aquifer. Ground Water Monitor Rev Fall, pp 125–137

  • Powers SE, Villaume JF, Ripp JA (1997) Multivariate analysis to improve understanding of NAPL pollutant sources. Ground Water Monitor Remed 17:130–140

    Google Scholar 

  • Walker S (1988) Soil gas survey. Merced PCE Inv, Central Valley Regional Water Quality Control Board Memo, 8 August 8 1988, file AB1803

  • Walker S (1989) Well investigation program assessment report, City of Merced wells 3A, 3B, 5, 2A, and 2B. Central Valley Regional Water Quality Control Board Rep, 9 June 1989

  • Welenco (1995) Water and environmental geophysical well logs, 7th edn. 1. Technical information and data. Welenco, Inc., Bakersfield, California

  • Williams RE (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized zones. Ground Water 20:466–478

    Google Scholar 

  • Zemo DA, Bruya JE, Graf TE (1995) The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation. Ground Water Monitor Remed 15:147–156

    Google Scholar 

Download references

Acknowledgments

Brian Aubry (currently of Geologica, Inc.) and Allison Remple developed the conceptual groundwater flow model at the Ft. Ord site. Julio Guerra of the City of Merced generously shared technical information on their regional PCE problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Santi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santi, P.M., McCray, J.E. & Martens, J.L. Investigating cross-contamination of aquifers. Hydrogeol J 14, 51–68 (2006). https://doi.org/10.1007/s10040-004-0403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0403-8

Keywords

Navigation