Advertisement

Hydrogeology Journal

, Volume 13, Issue 5–6, pp 727–751 | Cite as

Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting

  • Peter Ravenscroft
  • William G. Burgess
  • Kazi Matin Ahmed
  • Melanie Burren
  • Jerome Perrin
Report

Abstract

Arsenic contaminates groundwater across much of southern, central and eastern Bangladesh. Groundwater from the Holocene alluvium of the Ganges, Brahmaputra and Meghna Rivers locally exceeds 200 times the World Health Organisation (WHO) guideline value for drinking water of 10 µg/l of arsenic. Approximately 25% of wells in Bangladesh exceed the national standard of 50 µg/l, affecting at least 25 million people. Arsenic has entered the groundwater by reductive dissolution of ferric oxyhydroxides, to which arsenic was adsorbed during fluvial transport. Depth profiles of arsenic in pumped groundwater, porewater, and aquifer sediments show consistent trends. Elevated concentrations are associated with fine-sands and organic-rich sediments. Concentrations are low near the water table, rise to a maximum typically 20–40 m below ground, and fall to very low levels between about 100 and 200 m. Arsenic occurs mainly in groundwater of the valley-fill sequence deposited during the Holocene marine transgression. Groundwater from Pleistocene and older aquifers is largely free of arsenic. Arsenic concentrations in many shallow hand-tube wells are likely to increase over a period of years, and regular monitoring will be essential. Aquifers at more than 200 m below the floodplains offer good prospects for long-term arsenic-free water supplies, but may be limited by the threats of saline intrusion and downward leakage of arsenic.

Keywords

Arsenic Bangladesh Contamination General hydrogeology Hydrochemistry 

Résumé

L’arsenic contamine les eaux souterraines dans la plus grande partie du sud, du centre et de l’est du Bangladesh. Les eaux des nappes alluviales holocènes du Gange, du Brahmapoutre et de la Meghna dépassent localement 200 fois la valeur guide donnée par l’OMS pour l’eau de boisson, fixée à 10 µg/l d’arsenic. Environ 25% des puits du Bangladesh dépassent la valeur standard nationale de 50 µg/l, affectant au moins 25 millions de personnes. L’arsenic a été introduit dans les nappes par la dissolution par réduction d’oxy-hydroxydes ferriques sur lesquels l’arsenic était adsorbé au cours du transport fluvial. Des profils verticaux d’arsenic dans l’eau souterraine pompée, dans l’eau porale et dans les sédiments des aquifères montrent des tendances convergentes. Les concentrations élevées sont associées à des sédiments à sable fin et riches en matières organiques. Les concentrations sont faibles au voisinage de la surface de la nappe, atteignent un maximum typiquement entre 20 et 40 m sous le sol, puis tombent à des niveaux très bas entre 100 et 200 m. L’arsenic est surtout présent dans les eaux souterraines de la séquence de remplissage de vallée déposée au cours de la transgression marine holocène. Les eaux souterraines des aquifères pléistocènes et plus anciens sont très largement dépourvus d’arsenic. Les concentrations en arsenic dans de nombreux puits creusés à la main doivent probablement augmenter au cours des prochaines années ; aussi un suivi régulier est essentiel. Les aquifères à plus de 200 m sous les plaines alluviales offrent de bonnes perspectives pour des alimentations en eau sans arsenic à long terme, mais ils peuvent être limités par les risques d’intrusion saline et la drainance descendante de l’arsenic.

Resumen

El arsénico ha contaminado gran parte de las aguas subterráneas en el Sur, centro y Este de Bangla Desh. Su concentración en las aguas subterráneas del aluvial Holoceno de los ríos Ganges, Brahmaputra y Meghna supera localmente en un factor 200 el valor guía del arsénico en el agua potable, establecido por la Organización Mundial de la Salud (OMS) en 10 µg/L. Aproximadamente, el 25% de los pozos de Bangla Desh superan el estándar nacional de 50 µg/L, afectando al menos a 25 millones de personas. El arsénico ha llegado a las aguas subterráneas por la disolución reductora de hidróxidos férricos a los que se adsorbe durante el transporte fluvial. Los perfiles del arsénico en las aguas subterráneas bombeadas, agua de poro y sedimentos del acuífero muestran tendencias coherentes. Las concentraciones elevadas están asociadas a arenas finas y sedimentos ricos en materia orgánica. Las concentraciones de arsénico son bajas cerca del nivel freático, se incrementan hasta un máximo que se localiza generalmente a entre 20 y 40 m bajo la cota del terreno, y disminuyen a valores muy pequeños entre alrededor de 100 y 200 m. El arsénico se encuentra sobretodo en las aguas subterráneas existentes en la secuencia de sedimentación que tuvo lugar en el valle durante la transgresión marina del Holoceno. Las aguas subterráneas del Pleistoceno y acuíferos más antiguos están mayoritariamente libres de arsénico. Es probable que las concentraciones de arsénico aumenten en los próximos años en muchos pozos de tipo tubo perforados manualmente, por lo que será esencial efectuar un muestreo regular. Los acuíferos ubicados a más de 200 m bajo las llanuras de inundación ofrecen buenas perspectivas de abastecimiento a largo plazo sin problemas de arsénico, pero pueden estar limitados por las amenazas de la intrusión salina y de la precolación de arsénico desde niveles superiores.

Notes

Acknowledgements

PR and KMA thank Mr Kazi Nasir Uddin Ahmed, Additional Chief Engineer of the Department of Public Health Engineering for his support in conducting the Groundwater Studies for Arsenic Contamination project. We also wish to thank the project staff and the staff of DPHE for their co-operation during the project. We thank David Kinniburgh of the British Geological Survey for planning and co-ordinating the analytical aspects of the Regional Survey. The Groundwater Studies for Arsenic Contamination project was financed by the Department for International Development (UK). The Natural Environment Research Council provided an Advanced Course Studentship and fieldwork allowance to Melanie Burren. Jerome Perrin was supported by a fieldwork grant from the University College London Graduate School. We thank Mizanur Rahman of the Bangladesh Water Development Board for provision of core-samples from the Ujjalpur borehole. Chemical analyses for the Meherpur study were carried out by the Robens Institute for Public and Environmental Health at Surrey University, the Environmental Mineralogy laboratory of the Natural History Museum in London, and the Natural Environmental Research Council ICP-AES facility at Royal Holloway College, London. Grateful thanks for help with analyses are due to Andrew Taylor, Chris Stanley, Vic Din, Nikki Paige and Tony Osborn for assistance. Martin Gillham of Mott MacDonald Ltd, Mike McCarthy of the Department for International Development and Dr Babar Kabir of the World Bank are thanked for their support and encouragement. The script has been much improved due to helpful reviews by Kirk Nordstrom and Alan Welch of the USGS. Last, but not least, we wish to extend our sympathies to those people in Bangladesh and West Bengal whose lives have been so tragically affected by arsenic in groundwater.

References

  1. AAN (1999) Arsenic contamination of groundwater in Bangladesh: interim report of the research at Samta Village. Asian Arsenic Network, Research Group for Applied Geology and the National Institute for Preventive and Social Medicine, BangladeshGoogle Scholar
  2. Acharyya SK et al. (1999) Comment on Nickson et al. 1998. Nature 401:545Google Scholar
  3. Aggarwal PK, Basu AR, Poreda RJ (2000) Isotope hydrology of groundwater in Bangladesh: implications for characterisation and mitigation of arsenic in groundwater. International Atomic Energy Agency, Vienna, TC Project BGD/8/016, 23 ppGoogle Scholar
  4. Ahmed KM (1994) Hydrogeology of the Dupi Tila Sand Aquifer of the Barind Tract, NW Bangladesh. PhD Thesis (unpub), University of LondonGoogle Scholar
  5. Ahmed KM, Hoque M, Hasan K, Ravenscroft P, Chowdhury LR (1998) Occurrence and origin of water well methane gas in Bangladesh. J Geol Soc India 51:697–708Google Scholar
  6. Ahmed KM, Hasan MK, Burgess WG, Dottridge J, Ravenscroft P, van Wonderen J (1999) The Dupi Tila aquifer of Dhaka, Bangladesh: hydraulic and hydrochemical response to intensive exploitation. In: Chilton PJ (ed) International Contributions to Hydrogeology 21: Groundwater in the urban environment: selected city profiles. Balkema, Rotterdam, pp 19–30Google Scholar
  7. Alam MK, Hassan AKMS, Khan MR, Whitney JW (1990) Geological Map of Bangladesh. Geological Survey of BangladeshGoogle Scholar
  8. Asian Arsenic Network (1999) Arsenic contamination in Bangladesh. Interim Report of research at Samta village. Asian Arsenic NetworkGoogle Scholar
  9. BADC (1982) ADB Second Tubewell Project Feasibility Study, vol 3: Groundwater. Mott MacDonald Ltd and Hunting Technical Services. Report produced for Bangladesh Agricultural Development Corporation and the Asian Development Bann.Google Scholar
  10. BADC (1992) Final Report of the Deep Tubewell II Project, vol 2.1: Natural Resources. Mott MacDonald Ltd and Hunting Technical Services. Report produced for Bangladesh Agricultural Development Corporation and the Overseas Development AdministrationGoogle Scholar
  11. Bakr MA (1977) Quaternary geomorphic evolution of the Brahmanbaria-Noakhali area. Geol Surv Bangladesh Rec, VoI 2Google Scholar
  12. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater in Vietnam: A human health threat. Env Sci Tech 35:132621–2626Google Scholar
  13. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe water supply. Water Resources Development 3(1):79–92Google Scholar
  14. Bhattacharya P, Jacks G, Jana G, Sracek A, Gustaffson JP, Chatterjee D (2001) Geochemistry of the Holocene alluvial sediment of the Bengal Delta Plain: implications on arsenic contamination in groundwater. In: Bhattacharya P, Jacks G, Khan AA (eds) Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh. Proceedings of the KTH-Dhaka University Seminar, KTH Special Publication, TRITA-AMI report 3084, pp 21–40Google Scholar
  15. Brammer H (1996) The geography of the soils of Bangladesh. University Press, DhakaGoogle Scholar
  16. Breit GN (2000) Arsenic cycling in eastern Bangladesh: the role of phyllosilicates. Proc Ann Mtg Geol Soc Am, Reno, Nevada, Nov 9–18 Google Scholar
  17. Breit GN (2001) Early diagenetic ferric oxide accumulations along redox gradients: examples from modern and ancient fluvial sedimentary units. Geological Society of America Annual Meeting, Boston, Nov 1–10, Abstracts Volume 33, No 6Google Scholar
  18. Brunnschweiler RO, Khan MAM (1978) With Sherlock Holmes in the Bengal Basin. Second Offshore Southeast Asia Conference, Singapore, 5 ppGoogle Scholar
  19. Burgess WG, Ahmed KA, Burren M, Carruthers A, Cobbing C, Cuthbert MO, Mather SE, McCarthy EM, Perrin J, Chatterjee D (2001) The distribution, hydrochemical context and mobility of arsenic in alluvial aquifers of the Bengal Basin. Geological Society of America Annual Meeting, Boston, Nov 1–10, Abstracts Volume 33, No 6Google Scholar
  20. Burgess WG, Burren M, Perrin J, Ahmed KM (2002) Constraints on the sustainable development of arsenic-bearing aquifers in southern Bangladesh. Part 1: A conceptual model of arsenic in the aquifer. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geological Society, London, Special Publication 193, pp 145–163Google Scholar
  21. Burgess WG, Ahmed KM, Cobbing J, Cuthbert MO, Mather SE, McCarthy E, Chaterjee D (2002) Anticipating changes in arsenic concentration at tubewells in alluvial aquifers of the Bengal Basin. In: Bocanegra E, Martinez D, Massone H (eds) Groundwater and human development. Proceedings of the XXXII IAH and VI ALHSUD Congress, Mar del Plata, Argentina, October 2002, pp 365–371Google Scholar
  22. Burren M (1998) Small-scale variability of arsenic in groundwater in the District of Meherpur, Western Bangladesh. MSc Thesis (unpub), University College LondonGoogle Scholar
  23. Cobbing J (2000) The spatial variation of arsenic in groundwater at Magura, western Bangladesh. MSc Thesis, University College London (unpub)Google Scholar
  24. Cuthbert M (1999) Modelling the transport of arsenic to hand tubewells in the Holocene alluvial aquifer of Bangladesh. MSc Thesis (Unpub), University College LondonGoogle Scholar
  25. Cuthbert M, Burgess WG, Connell L (2002) Constraints on the sustainable development of arsenic-bearing aquifers in southern Bangladesh. Part 2: Preliminary models of arsenic variability in groundwater. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geological Society, London, Special Publication 193, pp 165–179Google Scholar
  26. Das D, Chatterjee A, Samanta G, Mandal BK, Chowdhury TR, Chowdhury PP, Chanda CR, Basu G, Lodh D, Nandi S, Chakraborti T, Bhattacharya SM, Chakraborty D (1994) Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst 119:168–170Google Scholar
  27. Das D, Chatterjee A, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18(1):5–15Google Scholar
  28. Datta DK, Subramanian V (1994) Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna River system in the Bengal Basin and their environmental implications. Environ Geol 30(3/4):181–188Google Scholar
  29. Davies J (1989) Pilot study into optimum well design: IDA 4000 Deep Tubewell Project. Vol 2: The geology of the alluvial aquifers of Central Bangladesh. British Geological Survey Technical Report WD/89/9Google Scholar
  30. Davies J (1995) The hydrochemistry of alluvial aquifers in central Bangladesh. In: Nash H, McCall GJH (eds) Groundwater Quality. Chapman and Hall, London, pp 9–18Google Scholar
  31. Davies J, Exley C (1992) Hydrochemical character of the main aquifer units of central and northeastern Bangladesh and possible toxicity of groundwater to fish and humans. Final Report. British Geological Survey Technical Report WD/92/43RGoogle Scholar
  32. Dawson AG (1992) Ice Age Earth: Late Quaternary geology and climate. Routledge, LondonGoogle Scholar
  33. DPHE (1996) Presence of arsenic in groundwater in the 18 district town projects. Short Mission Report. Department of Public Health Engineering, Bangladesh (unpubl)Google Scholar
  34. DPHE (1999) Groundwater studies for arsenic contamination in Bangladesh. Rapid Investigation Phase. Final Report. Mott MacDonald Ltd and British Geological Survey. Report for the Department for Public Health Engineering and the Departement for International DevelopmentGoogle Scholar
  35. DWASA (1991) Dhaka region groundwater and subsidence study. Final Report. Engineering and Planning Consultants, Dhaka and Mott MacDonald Ltd, UK. Report for Dhaka Water and Seware Authority and the World BankGoogle Scholar
  36. FAO/UNDP (1988) Land resources appraisal of Bangladesh. Food and Agriculture Organisation/United Nations Development Programme, Ministry of Agriculture, BangladeshGoogle Scholar
  37. Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New YorkGoogle Scholar
  38. Goodbred SL Jr, Kuehl SA (1999) Holocene and modern sediment budgets for the Ganges-Brahmaputra river system: evidence for highstand dispersal to floodplain, shelf and deep-sea depocenters. Geology 27(6):559–562CrossRefGoogle Scholar
  39. Goodbred SL Jr, Kuehl SA (2000) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment Geol 133:227–248CrossRefGoogle Scholar
  40. Hasan MK, Ahmed KM, Burgess WG, Dottridge J, Asaduzzaman M (1998) Limits on the sustainable development of the Dupi Tila aquifer, Bangladesh. In: Wheater H, Kirkby C, Rushton KR, Reid I (eds) Hydrology in a changing environment, vol II. Proceedings of the British Hydrological Society International Conference, Exeter, July 1998. Wiley, New York, pp 185–194Google Scholar
  41. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Supply Paper 2254, 3rd EdGoogle Scholar
  42. Herbert R, Barker JA, Davies J (1989) Pilot study into optimum well design: IDA 4000 Deep Tubewell II Project. Volume 6:Summary of the programme and results. British Geological Survey, BGS Technical Report WD/89/14Google Scholar
  43. Hoque BA (1998) Biological contamination of tubewell water. Environmental Health Programme Report, International Centre for Diarrhoeal Disease Research, Bangladesh. Report for Department for International Development (UK)Google Scholar
  44. Hoque M, Hasan MK, Ravenscroft P (2003) Investigation of groundwater salinity and gas problems in Southeast Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh – background to the arsenic crisis, agricultural potential and the environment. Bangladesh Centre for Advanced Studies. University Press, DhakaGoogle Scholar
  45. Huq SMI, Ara QAJ, Islam K, Zaher A, Naidu R (2001) The possible contamination from arsenic through food chain. In: Bhattacharya P, Jacks G, Khan AA (eds) Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh. Proceedings of the KTH-Dhaka University Seminar, KTH Special Publication, TRITA-AMI Report 3084, pp 9–96Google Scholar
  46. Imam B, Alam M, Akhter SH, Choudhury SQ, Hasan MA, Ahmed KM (1997) Sedimentological and mineralogical studies on arsenic contaminated aquifers in Bangladesh. Department of Geology, Dhaka University for Bangladesh Water Development BoardGoogle Scholar
  47. Jakariya M, Choudhury M, Tareq MAH, Ahmed J (1998) BRAC: Village health workers can test tubewell water for arsenic. Bangladesh Rural Advancement Committee. Available at: http://wso.net/wei/dch/acic/infobank
  48. JICA (1976) Feasibility study report for Jamuna River bridge construction project. Volume VI: Geology and stone material. Japan International Co-operation Agency. Report for the Jamuna Multipurpose Bridge AuthorityGoogle Scholar
  49. Johnston R (1998) Arsenic contamination of groundwater in Bangladesh: a quantitative secondary analysis of the NRECA/REB dataset. UNICEF, DhakaGoogle Scholar
  50. Khan FH (1991) Geology of Bangladesh. University Press, DhakaGoogle Scholar
  51. Kudrass HR, Spiess V, Michels M, Kottke B, Khan SR (1999) Transport processes, accumulation rates and a sediment budget for the submarine delta of the Ganges – Brahmaputra and the Swatch of No Ground, Bangladesh. International Seminar on the Quaternary Development and Coastal Hydrodynamics of the Ganges Delta in Bangladesh, Dhaka, 20–21 September. Geological Survey of BangladeshGoogle Scholar
  52. Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5:375–399Google Scholar
  53. Mallick S, Rajagopal NR (1996) Groundwater development in the arsenic-affected alluvial belt of West Bengal – Some Questions. Current Science 70(11):956–958Google Scholar
  54. Mason B (1966) Principles of Geochemistry. Wiley, New YorkGoogle Scholar
  55. Mather S (1999) The vertical and spatial variability of arsenic in the groundwater of Chaumohani, Southeast Bangladesh. MSc Thesis (unpub), University College LondonGoogle Scholar
  56. Mazumder DNG, Chakraborty AK, Ghose A, Gupta JD, Chakraborty DP, Dey SB, Chattopadhay N (1988) Chronic arsenic toxicity from tubewell water in rural West Bengal. Bulletin of the World Health Organisation 66(4):499–506Google Scholar
  57. Mazumder DNG, Das Gupta J, Chakraborty AK, Chatterjee A, Das D, Chakraborty D (1992) Environmental pollution and chronic arsenicosis in South Calcutta. Bulletin of the World Health Organisation 70(4):481–485Google Scholar
  58. McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research 37(1):109–117Google Scholar
  59. McCarthy EMT (2001) Spatial and depth distribution of arsenic in groundwater of the Bengal Basin. MSc Thesis (unpubl), University College LondonGoogle Scholar
  60. Monsur H (1995) An introduction to the Quaternary geology of Bangladesh. International Geological Correlation Programme IGCP-347, Rehana Akhter, DhakaGoogle Scholar
  61. Morgan JP, McIntire WG (1959) Quaternary geology of the Bengal Basin, East Pakistan and India. Geol Soc Amer Bull 70:319–342Google Scholar
  62. MPO (1987) Groundwater resources of Bangladesh. Technical Report Nr 5, Master Plan Organisation, Dhaka. Harza Engineering, USA, Mott MacDonald Ltd, UK, Meta Consultants, USA and EPC Ltd, BangladeshGoogle Scholar
  63. National Academy Press (2001) Arsenic in drinking water: 2001 update. Sub-Committee to update the 1999 Arsenic in Drinking Water Report, Goyer R (Chair). National Academy Press, Washington, DCGoogle Scholar
  64. Nickson R (1997) Origin and distribution of arsenic in groundwater, Central Bangladesh. MSc Thesis (unpub), University College LondonGoogle Scholar
  65. Nickson R, McArthur JM, Burgess WG, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning in Bangladesh groundwater. Nature 395:338CrossRefPubMedGoogle Scholar
  66. Nickson R, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15(4):403–413Google Scholar
  67. NMIDP (1997) National Minor Irrigation Census 1995–96. National Minor Irrigation Development Project, Ministry of Agriculture, DhakaGoogle Scholar
  68. Nordstrom DK (2000) An overview of arsenic mass poisoning in Bangladesh and West Bengal, India. In: Courtenay Young (ed) Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se, Te and Bi. Society for Mining, Metallurgy and Exploration, Littleton, CO, pp 21–30Google Scholar
  69. NRECA (1997) Study of the Impact of the Bangladesh Rural Electrification Program on Groundwater Quality. Bangladesh Rural Electrification Board. NRECA International with The Johnson Company (USA) and ICDDR,B (Bangladesh)Google Scholar
  70. Nriagu JO (ed) (1994) Arsenic in the environment. Wiley, New YorkGoogle Scholar
  71. Perrin J (1998) Arsenic in groundwater at Meherpur, Bangladesh: a vertical porewater profile and rock/water interactions. MSc Thesis (unpub), University College LondonGoogle Scholar
  72. PHED (1991) National Drinking Water Mission Submission Project on Arsenic pollution in groundwater in West Bengal. Final Report, Compiled by Steering Committee, Arsenic Investigation Project, Public Health Enegineering Department, Government of West Bengal, India 57 ppGoogle Scholar
  73. Rashid H (1991) Geography of Bangladesh, 2nd edn. University Press, DhakaGoogle Scholar
  74. Ravenscroft P (2001) Distribution of groundwater arsenic in the Bangladesh related to geology. In: Bhattacharya P, Jacks G, Khan AA (eds) Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh. Proc KTH-Dhaka University Seminar, KTH Special Publication, TRITA-AMI report 3084, pp 4–56Google Scholar
  75. Ravenscroft P (2003) An overview of the hydrogeology of Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources and development in Bangladesh– background to the arsenic crisis, agricultural potential and the environment. Bangladesh Centre for Advanced Studies. University Press Ltd, DhakaGoogle Scholar
  76. Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. Chappell WR, Abernathy CO, Calderon R (eds) Proc. 4th Int Conf on Arsenic Exposure and Health Effects, San Diego, June 2000. Elsevier, OxfordGoogle Scholar
  77. Rus JS (1985) Geohydrological investigations in Khulna. DPHE Water Supply and Sanitation Projects. Department of Public Health Enegineering, Netherlands—Bangladesh Development Co-operation ProgrammeGoogle Scholar
  78. Safiullah S (1998) Report on monitoring and mitigation of arsenic in the ground water of Faridpur Municipality. CIDA Arsenic Project, Environmental Research Lab, Dept of Chemistry, Jahangirnagar University, Savar, Dhaka, 96 ppGoogle Scholar
  79. Saha KC (1984) Melanokeratosis from arsenical contamination of tubewell water. Indian J Dermat 29:37–46Google Scholar
  80. Saha KC (1995) Chronic arsenic dermatosis from tubewell water in West Bengal during 1983–87. Indian J Dermat 40:1–12Google Scholar
  81. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking water by arsenic in Bangladesh: a public health emergency. Bulletin World Health Org 78(9):1093–1103Google Scholar
  82. Umitsu M (1993) Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sed Geol 83:177–186CrossRefGoogle Scholar
  83. UNICEF (1994) Declining water levels study. Report prepared for the United Nations Children’s Emergency Fund and Department of Public Health Engineering, Bangladesh by Engineering and Planning Consultants, Dhaka, and Mott MacDonald Ltd, UKGoogle Scholar
  84. UNICEF (1998) Progotir Pathey. UNICEF-Bangladesh, DhakaGoogle Scholar
  85. Wadia DN (1975) Geology of India, 4th edn. MacMillan, London, 508 ppGoogle Scholar
  86. Welch AH, Lico MS, Hughes JL (1988) Arsenic in ground water of the Western United States. Ground Water 26(3):333–347Google Scholar
  87. Whitney JW, Pavich MJ, Huq MA, Khorshed Alam AKM (1999) The age and isolation of the Madhupur and Barind Tracts, Ganges – Brahmaputra Delta, Bangladesh. International Seminar on the Quaternary Development and Coastal Hydrodynamics of the Ganges Delta in Bangladesh, 20–21 September. Geological Survey of Bangladesh, DhakaGoogle Scholar
  88. WHO (1993) Environmental Health Criteria 18: Arsenic. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Peter Ravenscroft
    • 1
  • William G. Burgess
    • 2
  • Kazi Matin Ahmed
    • 3
  • Melanie Burren
    • 2
    • 4
  • Jerome Perrin
    • 2
    • 5
  1. 1.Arcadis Geraghty and Miller InternationalNewmarketUK
  2. 2.Department of Earth SciencesUniversity College LondonLondon UK
  3. 3.Department of GeologyDhaka UniversityDhakaBangladesh
  4. 4.BerkhamsteadUK
  5. 5.Centre of HydrogeologyNeuchatel UniversityNeuchatelSwitzerland

Personalised recommendations