Advertisement

Hydrogeology Journal

, Volume 11, Issue 5, pp 582–594 | Cite as

Groundwater resources assessment of the Koyna River basin, India

  • Pradeep K. Naik
  • Arun K. Awasthi
Report

Abstract

The Western Ghats (hills) region of the Indian peninsula in western India receives heavy precipitation (4,000–6,000 mm/year), but the headwater basins that coalesce runoff from these hills retain very small quantities of water due to the steep topography. However, the narrow valleys in these hills support agriculture based on surface water irrigation, and several medium to large irrigation projects have already been constructed with well-defined canal networks. These developments have boosted agricultural productivity in the region, but at the same time they are causing an economic disparity between the command areas (irrigated by these canals) and non-command areas. Water-logging problems are also occurring in low-lying areas. While these problems are mainly due to poor groundwater management strategies in the region, the groundwater resources in these headwater basins should be properly assessed and suitable measures taken for uniform groundwater development. As a first step in this direction, groundwater resources have been assessed as a case study for the lower Koyna River basin, a head water basin on the east of the main ridge of the Western Ghats.

Regional specific yield (0.012) and groundwater recharge have been estimated on the basis of water table fluctuation method. Groundwater recharge amounting to 57 MCM (million m3) in a year takes place in the region through vertical percolation of rainwater (31 MCM), return flow of water applied for irrigation (23 MCM), and recharge due to surface water tanks (3 MCM). Recharge to deeper aquifers has been estimated at 1 MCM during dry seasons (November–May). Safe yield has been estimated at 58 MCM annually which includes the present groundwater draft by wells for domestic, stock, and irrigational needs estimated at 16.50 MCM per year and the natural losses from the groundwater system which are mostly baseflow and spring discharges amounting to 38 MCM (35 MCM baseflow + 3 MCM spring flow) per year, out of which 7 MCM is already being directly pumped from the tributaries of the Koyna River for irrigational needs. Thus, there remains a balance of only 3.5 MCM of groundwater for further groundwater development. Assuming that at least 25% (7 MCM) of the unutilized baseflow (28 MCM) can be brought to fruitful use, about 10.5 MCM (7+3.5 MCM) of groundwater can be used in the existing hydrogeological environment through about 500 additional wells.

Keywords

Western Ghats Groundwater resources assessment Groundwater recharge Groundwater discharge Specific yield Groundwater development Safe yield 

Résumé

La région des Collines occidentales (Western Ghats) de la péninsule indienne en Inde occidentale reçoit de fortes précipitations (4.000–6.000 mm/an); mais les bassins situés en tête qui convergent dans ces collines retiennent très peu d'eaux souterraines du fait des mauvaises conditions de pente en surface. Les vallées étroites dans ces collines offrent de larges espaces pour la mise en valeur des eaux de surface, en sorte que plusieurs projets d'irrigation moyens ou importants ont déjà été réalisés dans ces régions avec un réseau bien défini de canaux. Cette mise en valeur a réellement poussé la productivité agricole de la région, mais en même temps elle produit aussi une disparité économique entre les régions desservies (zones irriguées par ces canaux) et non desservies. Des problèmes relatifs à l'eau se posent également dans les zones basses. Alors que ces problèmes sont surtout dus à de médiocres stratégies de gestion dans la région, il est recommandé que les ressources en eaux souterraines dans ces bassins en tête soient correctement évaluées et que des mesures adéquates soient prises en vue d'une mise en valeur uniforme des eaux souterraines. À titre de première étape dans cette direction, les ressources en eaux souterraines ont été évaluées lors d'une étude de cas du bassin de la rivière Koyna, un bassin de tête situé à l'est de la chaîne principale des Collines Occidentales. Tous les paramètres d'entrée et de sortie ont été estimés et un bilan a été réalisé entre ces deux composantes. Les ressources statiques et dynamiques en eaux souterraines ont été estimées et un rendement sûr a été déterminé pour le bassin de la rivière Koyna en aval du barrage de Koyna.

Resumen

La región de las montañas de Western Ghats, al Oeste de la Península India, registra elevados valores de precipitación (de 4.000 a 6.000 mm/a), pero las condiciones topográficas de dichas montañas no permiten la existencia de acuíferos de entidad suficiente para albergar volúmenes grandes de aguas subterráneas. Los valles estrechos de las montañas sí permiten el desarrollo de las aguas superficiales, de manea que se ha realizado varios proyectos medianos y grandes de riego mediante redes de canales bien definidas. Estos desarrollos han propiciado un aumento de la producción agrícola en la región, pero, a la vez, se ha agudizado las diferencias económicas entre las zonas regadas y las no regadas. Además, las depresiones topográficas están padeciendo problemas de inundación. Como estos problemas son principalmente debidos a estrategias deficientes de gestión de las aguas subterráneas, se recomienda que los recursos subterráneas de las cuencas de cabecera sean adecuadamente determinados, y que se adopte medidas apropiadas para desarrollarlos uniformemente. El primer paso ha consistido en determinar los recursos subterráneos de la cabecera del río Koynam, situada al Este de la Sierra principal de los Western Ghats. Se ha estimado todos los parámetros de recarga y descarga, así como los recursos renovables, en la cuenca del río Koyna ubicada aguas debajo de la presa de Koyna.

Notes

Acknowledgements

The authors thank the people of the Koyna River basin for their cooperation in the field studies. Reviews and suggestions by Abraham Springer, Perry Olcott, and two anonymous reviewers greatly improved the quality of the manuscript. Thanks are also due to the Central Ground Water Board, Ministry of Water Resources, Government of India, for providing necessary field support and facilities. The views expressed in the paper are the authors' own and do not necessarily reflect the opinions of their affiliated departments.

References

  1. Adar EM, Neuman SP, Woolhiser DA (1988) Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data. J Hydrol 97:251–302Google Scholar
  2. Allison GB, Gee GW, Tyler SW (1994) Vadoze-zone techniques for estimating groundwater recharge in arid and semi-arid regions. Soil Sci Soc Am J 58:6–14Google Scholar
  3. Angadi KS (1986) Hydrogeological studies of the lower parts of Ghataprapha basin, Balgaum and Bijapur districts, Karnataka, India. PhD Treatise, University of Roorkee, IndiaGoogle Scholar
  4. Athavale RN, Rangarajan R, Muralidharan D (1992) Measurement of natural recharge in India. J Geol Soc India 39:235–244Google Scholar
  5. Birkley P, Torres Rotriguez V, González PE (1998) The water balance for the basin of the valley of Mexico and implications for future water consumption. Hydrogeol J 6(4):500–517CrossRefGoogle Scholar
  6. Bredenkamp DB, Botha LJ, Van Tonder GJ, Van Rensburg HJ (1995) Manual on quantitative estimation of groundwater recharge and aquifer storativity. Rep TT73/95. Water Research Commission, Pretoria, 419 ppGoogle Scholar
  7. Central Ground Water Board (1984a) Ground water resources of the Upper Betwa River basin, India. Indo-British Groundwater Project, Tech Ser, Bulletin 1. Central Ground Water Board, Ministry of Water Resources, Government of India, New DelhiGoogle Scholar
  8. Central Ground Water Board (1984b) Report of the ground water estimation committee. Central Ground Water Board, Ministry of Water Resources, Government of India, New DelhiGoogle Scholar
  9. Central Ground Water Board (1992) Ground water. In: Proc 3rd Natl Water Convention, Nagpur, India, pp 21–29Google Scholar
  10. Central Ground Water Board (1998) Detailed guidelines for implementing the ground water estimation methodology—1997. Central Ground Water Board, Ministry of Water Resources, Government of India, New Delhi, 219 ppGoogle Scholar
  11. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10 (1):5–17CrossRefGoogle Scholar
  12. Edmunds WM, Gaye CB (1994) Estimating the variability of groundwater recharge in the Sahel using chloride. J Hydrol 156:47–59Google Scholar
  13. Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Proc 2:255–266Google Scholar
  14. Gieske ASM, De Vries JJ (1990) Conceptual and computational aspects of the mixing cell method to determine groundwater recharge components. J Hydrol 121:277–292Google Scholar
  15. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(2):91–109CrossRefGoogle Scholar
  16. Karanth KR (1999) Ground water assessment, development and management. Tata McGraw Hill, New Delhi, 720 ppGoogle Scholar
  17. Kennett-Smith A, Cook PG, Walker GR (1994) Factors affecting groundwater recharge following clearing in the south-western Murray Basin. J Hydrol 154:85–105Google Scholar
  18. Krishnan MS (1982) Geology of India and Burma. CBS, Delhi, 536 ppGoogle Scholar
  19. Leaney FW, Herczeg AL (1995) Regional recharge to a karst aquifer estimated from chemical and isotopic composition of diffuse and localized recharge. J Hydrol 164:363–387CrossRefGoogle Scholar
  20. Lerner DN (1997) Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. AA Balkema, Rotterdam, pp 109–150Google Scholar
  21. Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge, a guide to understanding and estimating natural recharge. Rep 8. International Association of Hydrogeologists, Kenilworth, 345 ppGoogle Scholar
  22. Meinzer OE (1923) Outline of groundwater hydrology, with definitions. US Geol Surv Water Supply Pap 494Google Scholar
  23. Naik PK (1994) Hydrogeological investigations of the Deccan terrain of the Koyna sub basin, India. PhD Thesis, University of Roorkee, IndiaGoogle Scholar
  24. Naik PK, Awasthi AK, Anand AVSS, Mohan PC (2001) Hydrogeologic framework of the Deccan terrain of the Koyna River basin, India. Hydrogeol J 9(3):143–264CrossRefGoogle Scholar
  25. Naik PK, Awasthi AK, Mohan PC (2002) Springs in a headwater basin the Deccan Trap Country of the Western Ghats, India. Hydrogeol J 10(5)Google Scholar
  26. Rangarajan R, Athavale RN (2000) Annual replenishable groundwater potential of India—an estimate based on injected tritium studies. J Hydrol 234:38–53CrossRefGoogle Scholar
  27. Sahoo KB (1989) Determination of regional specific yield of phreatic aquifer in Yeshoda sub-basin, Maharashtra. Bhujal News 4(384):12–14Google Scholar
  28. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39CrossRefGoogle Scholar
  29. Sharma ML (1989) Groundwater recharge. AA Balkema, RotterdamGoogle Scholar
  30. Sharma SK, Jain SK, Jain PK (2000) Master plan for artificial recharge to groundwater in Maharashtra. Central Ground Water Board, Central Region, Nagpur, India, 60 ppGoogle Scholar
  31. Simmers I (ed) (1988) Estimation of natural groundwater recharge. Reidel, Boston, 510 ppGoogle Scholar
  32. Simmers I (ed) (1997) Recharge of phreatic aquifers in (semi-) arid areas. AA Balkema, Rotterdam, 277 ppGoogle Scholar
  33. Sivanappan RK (2002) Expansion of storage capacity, critical. In: Ravi N (ed) Survey of Indian agriculture 2002. The Hindu, Chennai, India, pp 179–181Google Scholar
  34. Stephens DB (1994) A perspective on diffuse natural recharge mechanisms in areas of low precipitation. Soil Sci Soc Am J 58:40–48Google Scholar
  35. Stephens DB (1996) Estimation of infiltration and recharge for environmental site assessment. API Publ 4643. Health and Environmental Sciences Department, Albuquerque, New MexicoGoogle Scholar
  36. Sukhija BS, Nagabhushanam P, Reddy DV (1996) Groundwater recharge in semi-arid regions of India: an overview of results obtained using tracers. Hydrogeol J 4(3):50–71CrossRefGoogle Scholar
  37. Swaminathan MS (2002) In our quest for quality produce.... In: Ravi N (ed) Survey of Indian agriculture 2002. The Hindu, Chennai, India, pp 9–13Google Scholar
  38. Todd DK (1980) Ground water hydrology, 2nd edn. Wiley, New York, 535 ppGoogle Scholar
  39. Water and Land Management Institute (1987) Lift irrigation schemes. In: Operation and management of irrigation systems in Maharashtra state, India. Publ 20. WALMI, Aurangabad, India, pp 92–107Google Scholar
  40. White WN (1932) A method of estimating groundwater supplies based on discharge by plants and evaporation from soil. US Geol Surv Water Supply Pap 659-AGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Central Ground Water Board, Central RegionNagpur India
  2. 2.Department of Earth SciencesIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations