Hydrogeology Journal

, Volume 11, Issue 1, pp 41–83 | Cite as

Hydromechanical coupling in geologic processes

Paper

Abstract

Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists.

Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust.

Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.

Keywords

Hydromechanics Poroelasticity Groundwater hydraulics Rheology Deformation 

Résumé

La croûte poreuse de la Terre et les fluides associés sont intimement liés dans leurs effets mécaniques réciproques. Ce papier présente une analyse d'un tel couplage "hydromécanique" et examine l'état actuel des connaissances de son rôle dans les processus géologiques. La théorie de l'hydromécanique et des modèles rhéologiques pour la déformation géologique est exposée de façon à introduire différentes approches analytiques dans le contexte considéré et à fournir aux non spécialistes une introduction à ce vaste sujet.

Les effets du couplage hydromécanique sont ubiquistes en géologie; ils peuvent être locaux et de courte durée ou régionaux et de longue durée. Des phénomènes tels que le dépôt et l'érosion, la tectonique, la séismicité, les marées terrestres et la pression barométrique produisent des contraintes qui tendent à modifier la pression du fluide. Les perturbations de pression résultantes peuvent être considérables, et de nombreuses pressions dites anormales paraissent avoir été créées de cette façon. Les effets de la pression des fluides sur les mécanismes crustaux sont également profonds. Les milieux géologiques se déforment et faiblissent considérablement en réponse à la contrainte efficace, c'est-à-dire la contrainte totale moins la pression du fluide. Il en résulte que les pressions de fluide contrôlent la compaction, la décompaction et d'autres types de déformations, telles que l'ouverture des fissures, la rupture et le glissement par cisaillement, y compris les évènements qui provoquent des séismes. En contrôlant la déformation et la rupture, les pressions de fluide régulent également les contraintes dans la croûte supérieure.

Les progrès réalisés au cours des 80 dernières années, dont les théories de la consolidation, de l'écoulement souterrain transitoire et de la poro-élasticité, ont été synthétisées dans un ensemble conceptuel cohérent qui permet de comprendre et de décrire le couplage hydromécanique. Le couplage complet en 2 ou 3 dimensions est décrit à partir d'équations du bilan de la déformation associées à une équation de conservation de la masse pour l'écoulement des fluides. Des analyses complètement couplées permettent de tester des hypothèses et de développer des modèles conceptuels. Cependant, l'application rigoureuse du couplage complet est souvent difficile parce que (1) le comportement rhéologique du milieu géologique est complexe et mal connu, et (2) on connaît mal les conditions d'architecture, de propriétés mécaniques et aux limites, ainsi que l'histoire de la déformation de la plupart des systèmes géologiques. L'essentiel de ce que l'on connaît sur les processus hydromécaniques dans les systèmes géologiques provient d'analyses plus simples qui ignorent certains aspects du couplage solide-fluide. Les simplifications introduisent une erreur, mais des analyses plus complètes ne sont habituellement pas justifiées. Les analyses hydromécaniques doivent donc être interprétées de façon judicieuse, avec une appréciation de leurs limites. Des approches innovantes de modélisation hydromécanique et d'obtention de données critiques peuvent contourner quelques limitations courantes et fournir des réponses aux questions en suspens concernant les processus crustaux et le comportement du fluide dans la croûte.

Resumen

La corteza porosa de la Tierra y sus fluidos interiores están íntimamente ligados por efectos mecánicos mutuos. Este artículo repasa este acoplamiento "hidromecánico" y examina el conocimiento actual de su papel en los procesos geológicos. Se incluye un bosquejo de la teoría de la hidromecánica y de los modelos reológicos de deformación geológica con el fin de contextualizar los diversos enfoques analíticos y de proporcionar una introducción a este extenso campo para los no especialistas.

Los efectos del acoplamiento hidromecánico son ubicuos en geología; pueden ser locales y breves o regionales y de larga duración. Fenómenos como la deposición y erosión, movimientos tectónicos y sísmicos, mareas terrestres y la carga barométrica producen deformaciones que tienden a alterar las presiones de los fluidos. Las perturbaciones resultantes en la presión pueden ser enormes, y muchas de las denominadas presiones "anómalas" parecen haber sido originadas de esta forma. Los efectos de la presión del fluido en la mecánica de la corteza terrestre son también profundos. Los medios geológicos se deforman y fallan ampliamente en respuesta a la tensión efectiva, equivalente a la tensión total menos la presión del fluido. Como consecuencia, las presiones del fluido controlan la compactación, descompactación y otros tipos de deformación, así como el diaclasado, las cizallas y las cizallas por deslizamiento, incluyendo eventos que generan terremotos. Controlando la deformación y el fallo, las presiones del fluido también regulan los estados tensionales en la corteza superior.

Se ha sintetizado los avances de los últimos 80 años, incluyendo las teorías de consolidación, flujo transitorio de aguas subterráneas y poroelasticidad en un marco conceptual razonablemente completo con el fin de comprender y describir el acoplamiento hidromecánico. Se describe el acoplamiento total en dos o tres dimensiones mediante ecuaciones de balance de fuerzas para la deformación acopladas con una ecuación de conservación de masa para el flujo del fluido. Los análisis completamente acoplados permiten verificar hipótesis y desarrollar modelos conceptuales. Sin embargo, la aplicación rigurosa de un acoplamiento total es a menudo difícil porque (1) el comportamiento reológico de los medios geológicos es complejo y apenas entendido, y (2) la arquitectura, propiedades mecánicas y condiciones de contorno, y la historia de deformación de la mayoría de sistemas geológicos, no son bien conocidas. Mucho de lo que se sabe de los procesos hidromecánicos en sistemas geológicos procede de análisis más sencillos que ignoran ciertos aspectos del acoplamiento sólido-fluido. Las simplificaciones introducen errores, pero habitualmente no se garantiza que haya análisis más completos. Así, los análisis hidromecánicos deberían ser interpretados juiciosamente, siendo conscientes de sus limitaciones. La adopción de enfoques innovadores de modelación hidromecánica y la obtención de datos críticos podrían superar las limitaciones actuales y proporcionar respuestas a las cuestiones no aclaradas sobre los procesos en la corteza terrestre y sobre el comportamiento de los fluidos en su interior.

References

  1. Anderson EM (1938) The dynamics of sheet intrusion. Proc R Soc Edinb 58:242–251Google Scholar
  2. Angevine CL, Turcotte DL (1983) Porosity reduction by pressure solution: a theoretical model for quartz arenites. Geol Soc Am Bull 94(10):1129–1134Google Scholar
  3. Athy, LF (1930) Density, porosity, and compaction of sedimentary rocks. Bull Am Assoc Petrol Geol 14(1):1–24Google Scholar
  4. Bangs NLB,Westbrook, GK (1991) Seismic modeling of the decollement zone at the base of the Barbados Ridge accretionary complex. J Geophys Res 96(B3):3853–3866Google Scholar
  5. Barbour SL, Fredlund DG (1989) Mechanisms of osmotic flow and volume change in clay soils. Can Geotech J 26(4): 551–562Google Scholar
  6. Batu V (1998) Aquifer hydraulics, Wiley, New YorkGoogle Scholar
  7. Bekele EB, Person MA, Rostron BJ (2000) Anomalous pressure generation within the Alberta Basin: Implications for oil charge to the Viking Formation. J Geochem Explor 69–70:601–605Google Scholar
  8. Bennett PC, Hibert FK, Rogers JR (2000) Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrogeol J 8(1):47–62CrossRefGoogle Scholar
  9. Berry FAF (1973) High fluid potentials in California coast ranges and their tectonic significance. Am Assoc Petrol Geol Bull 57(7):1219–1249Google Scholar
  10. Bethke CM (1989) Modeling subsurface flow in sedimentary basins. Geol Rundsch 78(1):129–154Google Scholar
  11. Bethke CM, Corbet TF (1988) Linear and nonlinear solutions for one-dimensional compaction flow in sedimentary basins. Water Resour Res 24(3):461–467Google Scholar
  12. Bethke CM, Lee M-K, Park J (1999) Basin modeling with Basin2, Release 4. University of Illinois, Urbana, IllinoisGoogle Scholar
  13. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164Google Scholar
  14. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185Google Scholar
  15. Biot MA (1956a) Theory of deformation of a porous viscoelastic anisotropic solid. J Appl Phys 27(5):459–467Google Scholar
  16. Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J Acoust Soc Am 28(2):168–178Google Scholar
  17. Biot MA (1956c) Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range. J Acoust Soc Am 28(2):179–191Google Scholar
  18. Biot MA (1972) Theory of finite deformations of porous solids. Ind Univ Math J 21(7):597–620Google Scholar
  19. Biot MA (1973) Nonlinear and semilinear rheology of porous solids. J Geophys Res 78(23): 4924–4937Google Scholar
  20. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601Google Scholar
  21. Bitzer K (1997) BASIN: A finite element model for simulation of consolidation, fluid flow, solute transport and heat flow in sedimentary basins. In: Pavlowsky-Glahn V (ed) Proc IAMG 97, CIMNE, UPC, Barcelona, pp 444–449Google Scholar
  22. Bitzer K, Salas J, Ayora C (2000) Fluid pressures, flow velocities and transport processes in a consolidating sedimentary column with transient hydraulic properties. J Geochem Explor 69–70:127–131Google Scholar
  23. Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New YorkGoogle Scholar
  24. Borja RI (1984) Finite element analysis of the time-dependent behavior of soft clays. PhD Thesis, Stanford University, Stanford, CaliforniaGoogle Scholar
  25. Borja RI, Kavazanjian E Jr. (1984) Finite element analysis of the time-dependent behavior of soft clays. Geotech Eng Rep No GT1, Dept Civ Eng, Stanford University, Stanford, California (Available from the first author)Google Scholar
  26. Borja RI, Kavazanjian, E Jr. (1985) A constitutive model for the stress-strain-time behaviour of 'wet' clays. Géotechnique 35(3):283–298Google Scholar
  27. Brace WF, Paulding B, Scholz CH (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3954Google Scholar
  28. Bredehoeft JD, Hanshaw BB (1968) On the maintenance of anomalous fluid pressures. I. Thick sedimentary sequences. Geol Soc Am Bull 79(9):1097–1106Google Scholar
  29. Bredehoeft JD, Wesley JB, Fouch TD (1994) Simulation of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta Basin, Utah. Am Assoc Petrol Geol Bull 78(11):1729–1747Google Scholar
  30. Britto AM, Gunn MJ (1987) Critical state soil mechanics via finite elements. Wiley, New YorkGoogle Scholar
  31. Cartwright JA, Lonergan L (1996) Volumetric contraction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems. Basin Res 8(2):183–193Google Scholar
  32. Cathles LM (1977) An analysis of the cooling of intrusives by ground-water convection which includes boiling. Econ Geol 72(5):804–826Google Scholar
  33. Cocco M, Rice JR (2002) Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J Geophys Res 107(B2):ESE 2.1 1–17CrossRefGoogle Scholar
  34. Cochrane GR, Moore JC, MacKay ME, Moore GF (1994) Velocity and inferred porosity model of the Oregon accretionary prism from multichannel seismic reflection data: implications on sediment dewatering and overpressure. J Geophys Res 99(B4):7033–7043Google Scholar
  35. Connolly JAD, Podladchikov YY (2000) Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics 324(3):137–168CrossRefGoogle Scholar
  36. Cooley RL (1975) A review and synthesis of the Biot and Jacob-Cooper theories of ground- water motion. Hydro and Water Resources Publ No 25, Center for Water Resources Research, Desert Research Institute, University of NevadaGoogle Scholar
  37. Corbet TF, Bethke CM (1992) Disequilibrium fluid pressures and groundwater flow in the Western Canada Sedimentary Basin. J Geophys Res 97(B5):7203–7217Google Scholar
  38. Curtis GP (2002) Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors. Comput Geosci (in press)Google Scholar
  39. Davis EE, Wang K, Thomson RE, Becker K, Cassidy JF (2001) An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients. J Geophys Res 106(B10):21953–21963Google Scholar
  40. Dewars T, Ortoleva P (1994) Nonlinear dynamical aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release. Am J Sci 294(6):713–755Google Scholar
  41. Detournay E, Cheng AH-D (1993) Fundamental of poroelasticity: In: Hudson JA (ed) Comprehensive rock engineering: principles, practice & projects, vol 2. Pergamon Press, OxfordGoogle Scholar
  42. Domenico PA, Palciauskas VV (1979) Thermal expansion of fluids and fracture initiation in compacting sediments. Geol Soc Am Bull Part 2 90(6):953–979Google Scholar
  43. Domenico PA, Schwartz FW (1998) Physical and Chemical Hydrogeology, 2nd edn. Wiley, New YorkGoogle Scholar
  44. Dugan B, Flemings PB (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science 289(5477):288–291CrossRefPubMedGoogle Scholar
  45. Elsworth D, Voight B (1991) Poroelastic response around an intrusion. In: Wittke W (ed) Proc 7th Int Congr on Rock Mech, Aachen, vol 1, Int Soc for Rock Mech, pp 455–461Google Scholar
  46. Engelder T (1993) Stress regimes in the lithosphere. Princeton University Press, Princeton, New JerseyGoogle Scholar
  47. Fertl WH (1976) Abnormal formation pressures. Elsevier, AmsterdamGoogle Scholar
  48. Fertl WH, Chapman RE, Hotz RF (eds) (1994) Studies in abnormal pressures. Elsevier, AmsterdamGoogle Scholar
  49. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  50. Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geological Survey Circular 1182Google Scholar
  51. Gambolati G (1974) Second-order theory of flow in three-dimensional deforming media. Water Resour Res 10(6):1217–1228Google Scholar
  52. Garven G (1989) A hydrogeologic model for the formation of giant oil sands deposits of the Western Canada sedimentary basin. Am J Sci 289(2):105–166Google Scholar
  53. Ge S, Garven G (1989) Tectonically induced transient groundwater flow in foreland basin. In: Price RA (ed) Geophys Monograph No 3, International Union of Geodesy and Geophysics, pp 145–158Google Scholar
  54. Ge S, Garven G (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin. J Geophys Res 97(B6):9119–9144Google Scholar
  55. Ge S, Garven G (1994) A theoretical model for thrust-induced deep groundwater expulsion with application to the Canadian Rocky Mountains. J Geophys Res 99(B7):13851–13868Google Scholar
  56. Geertsma J (1966) Problems of rock mechanics in petroleum production engineering. In: Proc of the 1st Int Congr of the Int Soc of Rock Mech, vol I, pp 585–594Google Scholar
  57. Gibson RE (1958) The progress of consolidation in a clay layer increasing in thickness with time. Géotechnique 8(4):171–182Google Scholar
  58. Gibson RE, Lo KY (1961) A theory of consolidation for soils exhibiting secondary compression. Publ 41, Nor Geotech Inst, Oslo, NorwayGoogle Scholar
  59. Giles M (1997) Diagenesis: a quantitative perspective. Kluwer, DordrechtGoogle Scholar
  60. Gordon DS, Flemings PB (1999) Two-dimensional modeling of groundwater flow in an evolving deltaic environment. In: Harbaugh JW, Watney WL, Rankey EC, Slingerland R, Goldstein RH, Franseen EK (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. Soc for Sediment Geol (SEPM), Spec Pub No 62Google Scholar
  61. Grecksch G, Roth F, Kümpel H-J (1999) Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophys J Int 138(2):470–478CrossRefGoogle Scholar
  62. Grollimund B, Zoback MD (2000) Post glacial flexure and induced stresses and pore pressure changes in the northern North Sea. Tectonophysics 327(1–2):61–81Google Scholar
  63. Grün G-U, Wallner H, Neugebauer HJ (1989) Porous rock deformation and fluid flow—numerical FE-simulation of the coupled system. Geol Rundsch 78(1):171–182Google Scholar
  64. Gueguen Y, David C, Gavrilenko P (1991) Percolation networks and fluid transport in the crust. Geophys Res Lett 18(5):931–934Google Scholar
  65. Gunn MJ, Britto AM (1981) CRISP—User's and Programmer's Manual. Eng Dept, Cambridge University, CambridgeGoogle Scholar
  66. Gwo JP, D'Azevedo EF, Frenzel H, Mayes M, Yeh G, Jardin PM, Salvage KM, Hoffman FM (2001) HBGC123D: a high-performance computer model of hydrogeologic and biogeochemical processes. Comput Geosci 27(10):1231–1242CrossRefGoogle Scholar
  67. Harrison WJ, Summa LL (1991) Paleohydrology of the Gulf of Mexico Basin. Am J Sci 291(2):109–176Google Scholar
  68. Harrold TWD, Swarbrick RE, Goulty NR (1999) Pore pressure estimation from mudrock porosities in Tertiary basins, Southeast Asia. Am Assoc Petrol Geol Bull 83(7):1057–1067Google Scholar
  69. Hart BS, Flemings PB, Deshpande A (1995) Porosity and Pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology 23(1):45–48CrossRefGoogle Scholar
  70. Haxby WF, Turcotte DL (1976) Stresses induced by the addition and removal of overburden and associated thermal effects. Geology 4(3):181–184Google Scholar
  71. Hickman S, Sibson R, Bruhn R (eds) (1994) Proc of Workshop LXIII, The Mechanical Involvement of Fluids in Faulting, US Geological Survey Open-File Report 94–228Google Scholar
  72. Hibbitt, Karlsson, and Sorenson, Inc (1998) ABAQUS, Standard User's manual, Version 5.8, vols. I-III. Pawtucket, Rhode IslandGoogle Scholar
  73. Hsieh PA (1994) Guide to BIOT2: a finite element model to simulate axisymmetric/plane-strain solid deformation and fluid flow in a linearly elastic porous medium. US Geological SurveyGoogle Scholar
  74. Hsieh PA, Bredehoeft JD (1981) A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J Geophys Res 86 (B2):903–920Google Scholar
  75. Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from earth tide analysis. Water Resour Res 23(10):1824–1832Google Scholar
  76. Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Petroleum Trans Am Inst Mining Eng 210:153–166Google Scholar
  77. Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol Soc Am Bull 70(2):115–166Google Scholar
  78. Hudnut KW, Seeber L, Pacheco J (1989) Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California. Geophys Res Lett 16(2):199–202Google Scholar
  79. Humbert P (ed) (1988) Manuel théorique de CESAR-LCPC [Theoretical Handbook of CESAR-LCPC]. Laboratoire Central des Ponts et Chaussées, ParisGoogle Scholar
  80. Ingebritsen SE, Sanford WE (1999) Groundwater in geologic processes. Cambridge University Press, CambridgeGoogle Scholar
  81. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Am Geophys Union Trans 21:574–586Google Scholar
  82. Jaeger JC, Cook NGW (1969) Fundamentals of rock mechanics. Methuen & Co, LondonGoogle Scholar
  83. Jayko AS (1996) Late Cenozoic strain rates across the La Honda Basin. In: Jayko AS, Lewis SD (eds) Toward assessing the seismic risk associated with blind faults, San Francisco Bay Region, California. US Geolological Survey Open-File Report 96-0267:74-80Google Scholar
  84. Karig DE (1985) The framework of deformation in the Nankai Trough, Initial Report of the Deep Sea Drill Project 87, pp 927–940Google Scholar
  85. Karig DE, Hou G (1992) High-stress consolidation experiments and their geologic implications. J Geophys Res 97(B1):289–300Google Scholar
  86. Keith LA, Rimstidt JD (1985) A numerical compaction model of overpressuring in shales. J Int Assoc Math Geol 17(2):115–135Google Scholar
  87. King C-Y, Azuma S, Ohno M, Asai Y, He P, Kitagawa Y, Igarashi G, Wakita H (2000) In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys J Int 143(2):469–477CrossRefGoogle Scholar
  88. King FH (1892) Fluctuations in the level and rate of movement of ground-water on the Wisconsin Agricultural Experiment Station Farm at Whitewater, Wisconsin. US Dept of Agriculture Bulletin 5Google Scholar
  89. Kruseman GP, De Ridder NA (1970) Analysis and evaluation of pumping test data. Bulletin 11, Int Inst for Land Reclam and Improv, Wageningen, NetherlandsGoogle Scholar
  90. Kümpel H-J (1991) Poroelasticity: parameters reviewed. Geophys J Int 105(3):783–799Google Scholar
  91. Lai WM, Rubin D, Krempl E (1978) Introduction to continuum mechanics (reviseded in SI/metric units). Pergamon Press, OxfordGoogle Scholar
  92. Lawn BR, Wilshaw TR (1975) Fracture of brittle solids. Cambridge University Press, CambridgeGoogle Scholar
  93. Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New YorkGoogle Scholar
  94. Lippincott DK, Bredehoeft JD, Moyle WR Jr. (1985) Recent movement on the Garlock Fault as suggested by water level fluctuations in a well in Fremont Valley, California. J Geophys Res 90(B2):1911–1924Google Scholar
  95. Lohman SW (1979) Ground-water hydraulics. US Geological Survey, Professional Paper 708Google Scholar
  96. Luo X, Vasseur G (1995) Modelling of pore pressure evolution associated with sedimentation and uplift in sedimentary basins. Basin Res 7(1):35–52Google Scholar
  97. Luo X, Vasseur G (1996) Geopressuring mechanism of organic matter cracking: numerical modeling. Am Assoc Petrol Geol Bull 80(6):856–874Google Scholar
  98. Luo X, Vasseur G, Pouya A, Lamoureux-Var V, Poliakov A (1998) Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale. Mar Petrol Geol 15(2):145–162CrossRefGoogle Scholar
  99. Magara K (1968) Subsurface fluid pressure profile, Nagaoka Plain, Japan. Bull Jpn Petrol Inst 10:1–7Google Scholar
  100. Makurat A, Barton N, Rad NS, Bandis S (1990) Joint conductivity variation due to normal and shear deformation, in rock joints. In: Barton N, Stephansson O (eds) Proc of the Int Symp on Rock Joints, Loen, Norway, pp 535–540Google Scholar
  101. Marone C, Raleigh CB, Scholz CH (1990) Frictional behavior and constitutive modeling of simulated fault gouge. J Geophys Res 95(B5): 7007–7025Google Scholar
  102. McMahon PB, Chapelle FH, Falls WF, Bradley PM (1992) Role of microbial processes in linking sandstone diagenesis with organic-rich clays. J Sediment Petrol 62(1):1–10Google Scholar
  103. McPherson BJOL, Bredehoeft JD (2001) Overpressures in the Uinta Basin, Utah: analysis using a three-dimensional basin evolution model. Water Resour Res 37(4):857–871Google Scholar
  104. McPherson BJOL, Garven G (1999) Hydrodynamics and overpressure mechanisms in the Sacramento Basin, California. Am J Sci 299(6):429–466Google Scholar
  105. McTigue DF (1986) Thermoelastic response of fluid-saturated porous rock. J Geophys Res 91(B9):9533–9542Google Scholar
  106. Meinzer OE (1928) Compressibility and elasticity of artesian aquifers. Econ Geol 23(3):263–291Google Scholar
  107. Muskat M (1937) The flow of homogeneous fluids through porous media. McGraw-Hill, New YorkGoogle Scholar
  108. National Research Council (1996) Rock fractures and fluid flow. National Academy Press, Washington, DCGoogle Scholar
  109. Neuzil CE (1986) Groundwater flow in low-permeability environments. Water Resour Res 22(8):1163–1195Google Scholar
  110. Neuzil CE (1993) Low fluid pressure within the Pierre Shale: a transient response to erosion. Water Resour Res 29(7):2007–2020Google Scholar
  111. Neuzil CE (1994) How permeable are clays and shales? Water Resour Res 30(2):145–150Google Scholar
  112. Neuzil CE (1995) Abnormal pressures as hydrodynamic phenomena. Am J Sci 295(6):742–786Google Scholar
  113. Nicholson C, Wesson RL (1990) Earthquake hazard associated with deep well injection. Report to the US Environmental Protection Agency, US Geological Survey Bulletin 1951Google Scholar
  114. Noorishad J, Tsang CF, Witherspoon PA (1984) Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. J Geophys Res 89(B12):10365–10373Google Scholar
  115. Norton D (1982) Fluid and heat transport phenomena typical of copper-bearing pluton environments, southeastern Arizona. In: Titley SR (ed) Advances in geology of porphyry copper deposits, southwestern North America, pp 59–72Google Scholar
  116. Norton D, Knight J (1977) Transport phenomena in hydrothermal systems cooling plutons. Am Jour of Sci 277(8):937–981Google Scholar
  117. Nur A, Booker JR (1972) Aftershocks caused by pore fluid flow? Science 175(4024):885–887Google Scholar
  118. Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76(26):6414–6419Google Scholar
  119. Nur A, Walder J (1990) Time-dependent hydraulics of the Earth's crust. In: The role of fluids in crustal processes. National Academy Press, Washington, DCGoogle Scholar
  120. Oliver J (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geological phenomena. Geology 14(2):99–102Google Scholar
  121. Ortoleva P, Al-Shaieb Z, Puckette J (1995) Genesis and dynamics of basin compartments and seals. Am J Sci 295(4):345–427Google Scholar
  122. Palciauskas VV, Domenico PA (1989) Fluid pressures in deforming porous rocks. Water Resour Res 25(2):203–213Google Scholar
  123. Palciauskas VV, Domenico PA (1982) Characterization of drained and undrained response of thermally loaded repository rocks. Water Resour Res 18(2):281–290Google Scholar
  124. Pfiffner OA, Ramsay JG (1982) Constraints on geological strain rates: Arguments from finite strain states of naturally deformed rocks. J Geophys Res 87(B1):311–321Google Scholar
  125. Picarelli L, Urciuoli G (1993) Effeti dell'erosione in argilliti di alta plasticità [Consequences of erosion in highly plastic clay shales]. Riv Ital Geotec 27(1):29–47Google Scholar
  126. Potdevin JL, Chen W, Park A, Chen Y, Ortoleva P (1992) CIRF; a general reaction-transport code; mineralization fronts due to the infiltration of reactive fluids. In: Kharaka YJ, Maest AS (eds) Proc 7th Int Symp on Rock-Water Interaction, pp 1047–1050Google Scholar
  127. Press F (1965) Displacements, strains, and tilts at teleseismic distances. J Geophys Res 70(10):2395–2412Google Scholar
  128. Quilty EG, Roeloffs EA (1997) Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bull Seis Soc Am 87(2):310–317Google Scholar
  129. Raleigh CB, Healy JH, Bredehoeft JD (1976) An experiment in earthquake control at Rangely, Colorado. Science 191(4233):1230–1236Google Scholar
  130. Ranganathan V (1992) Basin dewatering near salt domes and formation of brine plumes. J Geophys Res 97(B4):4667–4683Google Scholar
  131. Rendulic L (1936) Porenziffer und Porenwasserdruck in Tonen [Void ratio and pore water pressure in clays]. Der Bauingenieur 17:559–564Google Scholar
  132. Renshaw CE (1996) Influence of subcritical fracture growth on the connectivity of fracture networks. Water Resour Res 32(6):1519–1530Google Scholar
  133. Renshaw CE, Harvey CF (1994) Propagation velocity of a natural hydraulic fracture in a poroelastic medium. J Geophys Res 99(B11):21667–21677Google Scholar
  134. Renshaw CE, Pollard DD (1994) Numerical simulation of fracture set formation: a fracture mechanics model consistent with experimental observations. J Geophys Res 99(B5):9359–9372Google Scholar
  135. Revil A (1999) Pervasive pressure-solution transfer: a poro-visco-plastic model. Geophys Res Lett 26(2):255–258CrossRefGoogle Scholar
  136. Reynolds O (1886) Experiments showing dilatancy, a property of granular materials. Proc of the R Inst, vol 11, pp 354–363Google Scholar
  137. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14(2):227–241Google Scholar
  138. Rieke HH III, Chilingarian GV (1974) Compaction of argillaceous sediments. Developments in sedimentology, no 16. Elsevier, AmsterdamGoogle Scholar
  139. Roberts SJ, Nunn JA, Cathles L, Cipriani F-D (1996) Expulsion of abnormally pressured fluids along faults. J Geophys Res 101(B12):28231–28252Google Scholar
  140. Roeloffs E (1988) Hydrologic precursors to earthquakes: a review. Pure Appl Geophys 126(2–4):177–209Google Scholar
  141. Roeloffs E (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena. In: Dmowska R, Saltzman B (eds) Advances in Geophysics 37, pp 135–195Google Scholar
  142. Roeloffs E (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J Geophys Res 103(B1):869–889Google Scholar
  143. Rojstaczer S, Agnew DC (1989) The influence of formation material properties on the response of water levels in wells to earth tides and atmospheric loading. J Geophys Res 94(B9):12403–12411Google Scholar
  144. Rojstaczer SA, Bredehoeft JD (1988) Ground water and fault strength. In: Back WJ, Rosenshein S, Seaber PR (eds) The geology of North America, vol O-2. Hydrogeology. Geol Soc Am, pp 447–460Google Scholar
  145. Rojstaczer S, Wolf S, Michel R (1995) Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373(6511):237–239Google Scholar
  146. Roscoe KH, Burland JB (1968) On the generalized stress-strain behavior of "wet" clay. In: Heyman J, Leckie FA (eds) Engineering plasticity, pp 535–609Google Scholar
  147. Roscoe KH, Schofield AN, Thurairajah A (1963) Yielding of clays in states wetter than critical. Géotechnique 13(3):211–240Google Scholar
  148. Rubey WW, Hubbert MK (1959) Role of fluid pressure in mechanics of overthrust faulting: II. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis. Geol Soc Am Bull 70(2):167–206Google Scholar
  149. Rudnicki JW (1985) Effect of pore fluid diffusion on deformation and failure of rock. In: Bazant ZP (ed) Mechanics of geomaterials; rocks, concretes, soils, vol 15, pp 315–347Google Scholar
  150. Rutqvist J, Börgesson L, Chijimatsu M, Kobayashi A, Jing L, Nguyen TS, Noorishad J, Tsang C- F (2001) hermohydromechanics of partially saturated geologic media: governing equations and formulation of four finite element models. Int J Rock Mech Miner Sci 38(1):105–127CrossRefGoogle Scholar
  151. Saffer DM, Bekins BA (2002) Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology 30(3):271–274Google Scholar
  152. Schiffman RL, Chen, AT-F, Jordan JC (1969) An analysis of consolidation theories. Proc Am Soc Civil Eng 95(SM1):285–312Google Scholar
  153. Schneider F, Potdevin JL, Wolf S, Faille I (1996) Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics 263(1–4):307–317Google Scholar
  154. Schofield AN, Wroth CPW (1968) Critical state soil mechanics. McGraw-Hill, New YorkGoogle Scholar
  155. Screaton EJ, Wuthrich DR, Dreiss SJ (1990) Permeabilities, fluid pressures, and flow rates in the Barbados Ridge complex. J Geophys Res 95(B6):8997–9007Google Scholar
  156. Secor DT Jr (1965) Role of fluid pressure in jointing. Am J Sci 263(8):633–646Google Scholar
  157. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17(10):942–946CrossRefGoogle Scholar
  158. Segall P (1992) Induced stresses due to fluid extraction from axisymmetric reservoirs. Pure Appl Geophys 139(3/4):535–560Google Scholar
  159. Segall P, Grasso J-R, Mossop A (1994) Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J Geophys Res 99(B8):15423–15438Google Scholar
  160. Segall P, Rice JR (1995) Dilatancy, compaction, and fault instability of a fluid-infiltrated fault. J Geophys Res 100(B11): 22155–22171Google Scholar
  161. Shames IH (1964) Mechanics of deformable solids. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  162. Sherwood JD (1993) Biot poroelasticity of a chemically active shale. Proc R Soc Lond A 440:365–377Google Scholar
  163. Shi Y, Wang C-Y (1986) Pore pressure generation in sedimentary basins: overloading versus aquathermal. J Geophys Res 91(B2):2,153–2,162Google Scholar
  164. Shi Y, Wang C-Y (1988) Generation of high pore pressures in accretionary prisms: Inferences from the Barbados subduction complex. J Geophys Res 93(B8):8893–8910Google Scholar
  165. Sibson RH (2000) Tectonic controls on maximum sustainable overpressure: fluid redistribution from stress transitions. J Geochem Explor 69–70:471–475Google Scholar
  166. Simila GW (1998) Comparison of the seismicity and associated stress systems to the GPS strain rates for the Ventura Basin and Northridge regions (abstr). Am Assoc Petrol Geol Bull 82(5A):858Google Scholar
  167. Skempton AW (1954) The pore pressure coefficients A and B. Géotechnique 4(4):143–147Google Scholar
  168. Smith MB, Patillo PD (1983) A material model for inelastic rock deformation with spatial variation of pore pressure. Int J Numer Anal Meth Geomech 7(4):457–468Google Scholar
  169. Stauffer P, Bekins BA (2001) Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex. J Geophys Res 106(B4):6369–6383Google Scholar
  170. Šuklje L (1969) Rheological aspects of soil mechanics. Wiley-Interscience, LondonGoogle Scholar
  171. Swenson JB, Person M (2000) The role of basin-scale transgression and sediment compaction in stratiform copper mineralization: Implications from White Pine, Michigan, USA. J Geochem Explor 69-70:239–243Google Scholar
  172. Terzaghi K (1923) Die Berechnung der Durchlässigkeitziffer des Tones aus dem Verlauf der hydrodymanischen Spannungserscheinungen [The computation of permeability of clays from the progress of hydrodynamic strain]. Akad der Wissenschaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschaftliche Klasse, Part IIa, 132(3/4), pp 125–138Google Scholar
  173. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Am Geophys Union Trans 16:519–524Google Scholar
  174. Timoshenko SP, Goodier JN (1987) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  175. Tokunaga T (1996) Development of a Three-Dimensional Basin Simulator and its Application to an Actual Sedimentary Basin [in Japanese]. PhD Thesis, Univ of Tokyo, Tokyo, JapanGoogle Scholar
  176. Tóth J, Almási I (2001) Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids 1(1):11–36CrossRefGoogle Scholar
  177. Tullis TE, Tullis J (1986) Experimental rock deformation techniques, in Mineral and Rock Deformation: Laboratory Studies. In: Hobbs BE, Heard HC (eds) The Paterson Volume. Am Geophys Union Geophys Monogr 36:297–324Google Scholar
  178. Turcotte DL, Schubert G (1982) Geodynamics. Wiley, New YorkGoogle Scholar
  179. Unruh JR, Davisson ML, Criss RE, Moores EM (1992) Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California. Geology 20(15):431–434Google Scholar
  180. van der Kamp G, Gale JE (1983) Theory of earth tide and barometric effects in porous formations with compressible grains. Water Resour Res 19(2):538–544Google Scholar
  181. van der Kamp G, Schmidt R (1997) Monitoring of total soil moisture on a scale of hectares using groundwater piezometers. Geophys Res Lett 24(6):719–722Google Scholar
  182. Verruijt A(1969) Elastic storage of aquifers. In: De Wiest RJM (ed) Flow through porous media, pp 331–336Google Scholar
  183. Vinard PH (1998) Generation and Evolution of Hydraulic Underpressures in a Marl-Shale Aquitard at Wellenberg, central Switzerland. Thèse de D Sc, Univ. de Neuchâtel, SwitzerlandGoogle Scholar
  184. Vinard P, Blumling P, McCord JP, Aristorenas G (1993) Evaluation of hydraulic underpressures at Wellenberg, Switzerland. Int J Rock Mech Mining Sci 30(7):1143–1150Google Scholar
  185. Vrolijk P, Fisher A, Gieskes J (1991) Geochemical and geothermal evidence for fluid migration in the Barbados accretionary prism, ODP Leg 110. Geophys Res Lett 18(5):947–950Google Scholar
  186. Wang HF (1997) Effects of deviatoric stress on undrained pore pressure response to fault slip. J Geophys Res 102(B8):17943–17950Google Scholar
  187. Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton, New JerseyGoogle Scholar
  188. Ward SN (1998) On the consistency of earthquake moment release and space geodetic strain rates: Europe. Geophys J Int 135(3):1011–1018CrossRefGoogle Scholar
  189. Wesson RL (1981) Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction. J Geophys Res 86(B10):9259–9267Google Scholar
  190. Williams CF, Narasimhan TN (1989) Hydrogeologic constraints on heat flow along the San Andreas fault: a testing of hypotheses. Earth Planet Sci Lett 92(2):131–143CrossRefGoogle Scholar
  191. Wilson AM, Garven G, Boles JR (1999) Paleohydrology of the San Joaquin basin, California. Geol Soc Amr Bull 111(3):432–449CrossRefGoogle Scholar
  192. Zimmerman RW (2000) Coupling poroelasticity and thermoelasticity. Int J Rock Mech Mining Sci 37(1–2):79–87Google Scholar
  193. Zoback MD, Harjes H-P (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res 102(B8):18477–18491Google Scholar
  194. Zoback MD, Lachenbruch AH (1992) Introduction to special section on Cajon Pass scientific drilling project. J Geophys Res 97(4):4991–4994Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.US Geological Survey431 National CenterRestonUSA

Personalised recommendations