Skip to main content
Log in

Minimalinvasive Versorgung von Kalkaneusfrakturen

Minimally invasive stabilization of calcaneal fractures

  • Standards in der Unfallchirurgie
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Kalkaneusfrakturen sind schwere Verletzungen mit weitreichenden Folgen für die Statik des Rückfußes und Integrität des unteren Sprunggelenks. Perkutane Repositionstechniken werden seit der Erstbeschreibung durch Westhues 1934 für einfache Frakturen mit großem Tuberfragment (Sanders II C) erfolgreich angewandt. Für dislozierte Trümmerfrakturen mit imprimierten, vom Tuber separierten Gelenkflächenfragmenten haben sich die offene Reposition und Plattenosteosynthese über einen erweiterten lateralen Zugang seit den 1990er-Jahren trotz der hohen Wundkomplikationsrate von bis zu 25 % als Goldstandard etabliert. Während Studien den Zusammenhang anatomischer Gelenkflächenreposition und gutem Outcome belegten und eine offene Frakturreposition alternativlos erscheinen ließen, ist mittlerweile dank flächendeckender Verbreitung moderner 3‑D-Bildwandlerverfahren eine detaillierte intraoperative Repositionsanalyse ohne exzessive Frakturdarstellung möglich. Durch Kombination der offenen Gelenkflächenreposition über minimalinvasiven Sinus-tarsi-Zugang mit perkutanen Repositions- und Osteosynthesetechniken und intraoperativer 3‑D-Bildwandlerkontrolle ist die sichere Versorgung auch komplexer Frakturen (Sanders II A/B, III) möglich. Somit könnte die über Jahrzehnte standardisiert durchgeführte offene Reposition durch eine sich auf moderne Techniken der intraoperativen Bildgebung stützende minimalinvasive Stabilisation der Kalkaneusfraktur zunehmend abgelöst werden.

Abstract

Fractures of the calcaneus are severe injuries causing far-reaching alterations of hind foot alignment and subtalar joint function. Percutaneous reduction techniques have been successfully used since the first description by Westhues (1934) in the treatment of simple fractures with large tubercular fragments (Sanders IIC). For comminuted intra-articular fractures with separated subtalar fragments, open reduction and internal fixation with locking plate osteosynthesis via the extended lateral approach (ELA) has become established as the gold standard since the 1990s despite a high rate of wound complications of up to 25%. Studies confirmed the association of anatomical joint surface reduction and good outcome and there seems to be no alternative to an open fracture reduction. Meanwhile, modern 3D-imaging technology enables detailed intraoperative analysis of the joint reduction without the need for extensive fracture exposure. By the combination of open joint surface reduction using the minimally invasive sinus tarsi approach with percutaneous reduction and fixation techniques in combination with intraoperative 3D-imaging, a safe treatment even of complex fractures (Sander IIA/B, III) is possible. Therefore, the standardized open reduction which has been carried out for decades could be increasingly replaced by minimally invasive stabilization of calcaneal fractures assisted by modern techniques of intraoperative imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14

Literatur

  1. Abidi NA, Dhawan S, Gruen GS et al (1998) Wound-healing risk factors after open reduction and internal fixation of calcaneal fractures. Foot Ankle Int 19:856–861

    Article  CAS  Google Scholar 

  2. Backes M, Schepers T, Beerekamp MSHH et al (2013) Wound infections following open reduction and internal fixation of calcaneal fractures with an extended lateral approach. Int Orthop 38(4):767–773

    Article  Google Scholar 

  3. Bai L, Hou YL, Lin GH et al (2018) Sinus tarsi approach (STA) versus extensile lateral approach (ELA) for treatment of closed displaced intra-articular calcaneal fractures (DIACF): A meta-analysis. Orthop Traumatol Surg Res 104(2):239–244

    Article  CAS  Google Scholar 

  4. Buckley R, Tough S, McCormack R et al (2002) Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am 84-A(10):1733–1744

    Article  Google Scholar 

  5. Carr JB, Hamilton JJ, Bear LS (1989) Experimental Intra-Articular Calcaneal fractures: Anatomic basis for a new Classification. Foot Ankle 10(2):81–87

    Article  CAS  Google Scholar 

  6. Crosby LA, Fitzgibbons T (1993) Intraarticular calcaneal fractures. Results of closed treatment. Clin Orthop 290:47–54

    Google Scholar 

  7. Ender HG, Moser K (1988) Die Erhöhung des Druckes in den Logen der Sohle bei Gelenkbrüchen des Fersenbeines. Unfallchirurg 91:523–525

    CAS  PubMed  Google Scholar 

  8. Essex-Lopresti P (1952) The mechanism, reduction technique, and results in fractures of the os calcis. Br J Surg 39:395–419

    Article  CAS  Google Scholar 

  9. Gavlik JM, Rammelt S, Zwipp H (2002) Percutaneous, arthroscopically assisted osteosynthesis of calcaneus fractures. Arch Orthop Trauma Surg 122:424–428

    Article  Google Scholar 

  10. Geerling J, Kendoff D, Citak M et al (2009) Intraoperative 3D imaging in calcaneal fracture care-clinical implications and decision making. J Trauma 66(3):768–773

    Article  Google Scholar 

  11. Griffin D, Parsons N, Shaw E et al (2014) Operative versus non-operative treatment for closed, displaced, intra-articular fractures of the calcaneus: randomised controlled trial. BMJ 349:g4483

    Article  Google Scholar 

  12. Harvey EJ, Grujic L, Early JS et al (2001) Morbidity associated with ORIF of intra-articular calcaneus fractures using a lateral approach. Foot Ankle Int 22:868–873

    Article  CAS  Google Scholar 

  13. Howells NR, Hughes AW, Jackson M et al (2014) Interobserver and intraobserver reliability assessment of calcaneal fracture classification systems. J Foot Ankle Surg 53(1):47–51

    Article  Google Scholar 

  14. Kendoff D, Citak M, Gardner M et al (2007) Three-dimensional fluoroscopy for evaluation of articular reduction and screw placement in calcaneal fractures. Foot Ankle Int 28(11):1165–1171

    Article  Google Scholar 

  15. Letournel E (1993) Open treatment of acute calcaneal fractures. Clin Orthop Relat Res May(290):60–67

    Google Scholar 

  16. Mahmoud K, Mekhaimar MM, Alhammoud A (2018) Prevalence of Peroneal Tendon Instability in Calcaneus Fractures: A Systematic Review and Meta-Analysis. J Foot Ankle Surg 57(3):572–578

    Article  Google Scholar 

  17. Mitchell MJ, McKinley JC, Robinson CM (2009) The epidemiology of calcaneal fractures. Foot (Edinb) 19(4):197–200

    Article  CAS  Google Scholar 

  18. Mittlmeier T (2011) Akutes Kompartmentsyndrom und Komplextrauma des Fußes. Unfallchirurg 114:893–900

    Article  CAS  Google Scholar 

  19. Mulcahy DM, McCormack DM, Stephens MM (1998) Intra-articular calcaneal fractures: effect of open reduction and internal fixation on the contact characteristics of the subtalar joint. Foot Ankle Int 19(12):842–848

    Article  CAS  Google Scholar 

  20. Prokop A, Müller S, Warnke T, Rehm KE (2007) Problem Fersenbeinfraktur. Trauma Berufskrankh 9(4):315–318

    Article  Google Scholar 

  21. Rammelt S, Amlang M, Barthel S, Zwipp H (2004) Minimally-invasive treatment of calcaneal fractures. Injury 35:55–63

    Article  Google Scholar 

  22. Rammelt S, Zwipp H (2004) Calcaneus fractures: facts, controversies and recent developments. Injury 35:443–461

    Article  Google Scholar 

  23. Sanders R, Fortin P, Di Pasquale T, Walling A (1993) Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop Relat Res May(290):87–95

    Google Scholar 

  24. Sanders R (2000) Displaced intra-articular fractures of the calcaneus. J Bone Joint Surg Am 82:225–250

    Article  CAS  Google Scholar 

  25. Sangeorzan BJ, Ananthakrishnan D, Tencer AF (1995) Contact characteristics of the subtalar joint after a simulated calcaneus fracture. J Orthop Trauma 9(3):251–258

    Article  CAS  Google Scholar 

  26. Schofer M, Schoepp C, Rülander C et al (2005) Operative und konservative Behandlung der Kalkaneusfrakturen. Trauma Berufskrankh Supp (1):156–161

    Article  Google Scholar 

  27. Smerek, Kadakia A, Belkoff SM et al (2008) Percutaneous screw configuration versus perimeter plating of calcaneus fractures: a cadaver study. Foot Ankle Int 29:931–935

    Article  Google Scholar 

  28. Smyth NA, Zachwieja EC, Buller LT et al (2017) Surgical approaches to the calcaneus and the sural nerve: There is no safe zone. Foot Ankle Surg. https://doi.org/10.1016/j.fas.2017.06.005

    Article  PubMed  Google Scholar 

  29. Thoren O (1964) Os calcis fractures. Acta Orthop Scand Suppl. 70:1–116

    Article  Google Scholar 

  30. Tornetta P III (1998) The Essex-Lopresti reduction for calcaneal fractures revisited. J Orthop Trauma 12:469–473

    Article  Google Scholar 

  31. Van Hoeve S, Poeze M (2016) Outcome of Minimally Invasive Open and Percutaneous Techniques for Repair of Calcaneal Fractures: A Systematic Review. J Foot Ankle Surg 55(6):1256–1263

    Article  Google Scholar 

  32. Veltman ES, Doornberg JN, Stufkens a SS et al (2013) Long-term Outcomes of 1,730 Calcaneal Fractures: Systematic Review of the Literature. Foot Ankle 52(486):90

    Google Scholar 

  33. Weber M, Lehmann O, Sagesser D, Krause F (2008) Limited open reduction and internal fixation of displaced intra-articular fractures of the calcaneum. J Bone Joint Surg Br 90:1608–1616

    Article  CAS  Google Scholar 

  34. Westhues H (1934) Eine neue Behandlungsmethode der Calcaneusfrakturen. Arch Orthop Unfallchir 35:121

    Article  Google Scholar 

  35. Wuelker N, Zwipp H, Tscherne H (1991) Experimental study of the classification of intra-articular calcaneus fractures. Unfallchirurg 94(4):198–203

    Google Scholar 

  36. Zwipp H, Rammelt S, Gavlik J et al (2000) Trauma Berufskrankh 2(Suppl 1):129

    Article  Google Scholar 

  37. Zwipp H, Rammelt St (2014) Tscherne Unfallchirurgie Fuß. Springer, Heidelberg, Berlin, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gaul.

Ethics declarations

Interessenkonflikt

L. Gaul, J. Gabel, F. Stuby und V. Bühren geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaul, L., Gabel, J., Stuby, F. et al. Minimalinvasive Versorgung von Kalkaneusfrakturen. Trauma Berufskrankh 20, 256–268 (2018). https://doi.org/10.1007/s10039-018-0406-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-018-0406-7

Schlüsselwörter

Keywords

Navigation