Skip to main content
Log in

Serummarker nach Schädel-Hirn Trauma

Serum parameters after traumatic brain injury

  • Übersichten
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Klassifikation

Das Schädel-Hirn-Trauma (SHT) wird entsprechend der neurologischen Beeinträchtigung und dem damit verbundenen Punktwert im Glasgow-Coma-Score (GCS) eingeteilt in leicht (GCS: 13 bis 15 Punkte), mittel (GCS: 9 bis 12 Punkte) und schwer (GCS: 3 bis 8 Punkte).

Diagnostik

Während das diagnostische Management beim mittleren und schweren SHT immer die kraniale Computertomographie (CCT) beinhaltet, stellt das leichte SHT ein diagnostisches Dilemma dar. Die Ursache hierfür ist darin begründet, dass die neurologischen Beeinträchtigungen weitaus häufiger durch Begleitintoxikationen usw. bedingt sind als durch intrakraniale Pathologien, dies jedoch nicht als Ausschlusskriterium herangezogen werden kann, sodass derzeit alle Patienten mit SHT mittels CCT untersucht werden müssen. Serummarker wurden als zusätzliches diagnostisches Werkzeug propagiert, um die Indikationsstellung zur CCT verbessern zu können.

Literaturdaten

Die derzeitige Studienlage zu Serummarkern in der Diagnostik des leichten SHT wird zusammengefasst, und der derzeitige Wissensstand wird anhand einer übersichtlichen Grafik klar dargestellt.

Abstract

Classification

In patients with traumatic brain injury (TBI), the Glasgow Coma Scale (GCS) is the most commonly used system for classification of TBI severity. Using the GCS score TBI can be classified into mild (GCS 15-13), moderate (GCS 13-9) and severe (GCS 8-3).

Diagnostics

In patients with moderate or severe TBI cranial computed tomography (CCT) is obligatory. In patients presenting with mild TBI physicians face a dilemma because the neurological impairment occurs more often as a corollary of acute intoxication or pre-existing conditions and not due to intracranial lesions. Nevertheless, to exclude the risk of intracranial bleeding all patients with mild TBI have to undergo neuroradiological imaging. Individuals suffering from mild TBI would therefore benefit from additional evaluation of serum parameters that help to determine the necessity for a CCT scan.

Literature

This review provides a critical assessment of current serum parameters used for the diagnosis of mild TBI and the current state of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Balakathiresan N, Bhomia M, Chandran R et al (2012) MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma 29(7):1379–1387

    Article  PubMed  Google Scholar 

  2. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T (2006) Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj 20:759–765

    Article  PubMed  Google Scholar 

  3. Bazarian JJ, Zhong J, Blyth B et al (2007) Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma 24:1447–1459

    Article  PubMed  Google Scholar 

  4. Begaz T, Kyriacou DN, Segal J, Bazarian JJ (2006) Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. J Neurotrauma 23:1201–1210

    Article  PubMed  Google Scholar 

  5. Berger RP, Bazaco MC, Wagner AK et al (2010) Trajectory analysis of serum biomarker concentrations facilitates outcome prediction after pediatric traumatic and hypoxemic brain injury. Dev Neurosci 32:396–405

    PubMed  CAS  Google Scholar 

  6. Berger RP, Hayes RL, Richichi R et al (2012) Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma 29(1):162–167

    Article  PubMed  Google Scholar 

  7. Biberthaler P, Mussack T, Kanz KG et al (2004) Identifikation von Hochrisikopatienten nach leichtem Schädel-Hirn-Trauma. Messung des neuroglialen Proteins S100. Unfallchirurg 107(3):197–202

    Article  PubMed  CAS  Google Scholar 

  8. Biberthaler P, Linsenmeier U, Pfeifer K et al (2006) Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 25(5):446–453

    Article  PubMed  CAS  Google Scholar 

  9. Blyth BJ, Farahvar A, He H et al (2011) Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal bloodbrain barrier function after traumatic brain injury. J Neurotrauma 28:2453–2462

    Article  PubMed  Google Scholar 

  10. Büki A, Okonkwo DO, Wang KK, Povlishock JT (2000) Cytochrome C release and caspase activation in traumatic axonal injury. J Neurosci 20(8):2825–2834

    PubMed  Google Scholar 

  11. Cassidy JD, Carroll LJ, Peloso PM et al (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med Suppl 43:28–60

    Article  Google Scholar 

  12. Dash P, Zhao J, Hergenroeder G (2010) Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7(1):100–114

    Article  PubMed  CAS  Google Scholar 

  13. DeKosky ST, Abrahamson EE, Ciallella JR et al (2007) Association of increased cortical soluble Aβ42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol 64:541–544

    Article  PubMed  Google Scholar 

  14. d’Hemecourt P (2011) Subacute symptoms of sports-related concussion: outpatient management and return to play. Clin Sports Med 30:63–72, viii

    Article  Google Scholar 

  15. Diener HC, Putzki N, Berlitt C et al (2008) Leitlinien für Diagnostik und Therapie in der Neurologie, 4. überarb. Aufl. Thieme, Stuttgart New York, S 654

  16. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551

    Article  PubMed  CAS  Google Scholar 

  17. Evans RW (1992) The postconcussion syndrome and the sequelae of mild head injury. Neurol Clin 10(4):815–847

    PubMed  CAS  Google Scholar 

  18. Fenelon K, Mukai J, Xu B et al (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 108:4447–4452

    Article  PubMed  CAS  Google Scholar 

  19. Hall RC, Hall RC, Chapman MJ (2005) Definition, diagnosis, and forensic implications of postconcussional syndrome. Psychosomatics 46(3):195–202

    Article  PubMed  Google Scholar 

  20. Healy DG, Abou-Sleiman PM, Wood NW (2005) Genetic causes of Parkinson’s disease: UCHL-1. Cell Tissue Res 318(1):189–194

    Article  Google Scholar 

  21. Hoge CW, Castro CA, Messer SC et al (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 351:13–22

    Article  PubMed  CAS  Google Scholar 

  22. Honda M, Tsuruta R, Kaneko T et al (2010) Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 69:104–109

    Article  PubMed  CAS  Google Scholar 

  23. Huh GY, Glantz SB, Je S et al (2001) Calpain proteolysis of alpha-II-spectrin in the normal adult human brain. Neurosci Lett 316(1):41–44

    Article  PubMed  CAS  Google Scholar 

  24. Hulsebosch CE (2008) Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury. Exp Neurol 214:6–9

    Article  PubMed  CAS  Google Scholar 

  25. Ikonomovic MD et al (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203

    Article  PubMed  CAS  Google Scholar 

  26. Ingebrigtsen T, Romner B (2003) Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restor Neurol Neurosci 21:171–176

    PubMed  CAS  Google Scholar 

  27. Isaacs A, Baker M, Wavrant-De Vrièze F, Hutton M (1998) Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 51(1):152–154

    Article  PubMed  CAS  Google Scholar 

  28. Iverson GL (2005) Outcome from mild traumatic brain injury. Curr Opin Psychiatry 18(3):301–317

    Article  PubMed  Google Scholar 

  29. Jacobson RR (1995) The post-concussional syndrome: physiogenesis, psychogenesis and malingering. An integrative model. J Psychosom Res 39(6):675–693

    Article  PubMed  CAS  Google Scholar 

  30. Jagoda AS, Bazarian JJ, Bruns JJ Jr et al (2008) Clinical policy: neuroimaging and decision making in adult mild traumatic brain injury in the acute setting. Ann Emerg Med 52:714–748

    Article  PubMed  Google Scholar 

  31. Jeter CB, Hergenroeder GW, Hylin MJ et al (2012) Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma Oct 12. [Epub ahead of print]

  32. Kövesdi E, Lückl J, Bukovics P et al (2010) Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir 152(1):1–17

    Article  PubMed  Google Scholar 

  33. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17.442–17.452

    Article  Google Scholar 

  34. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  PubMed  Google Scholar 

  35. Li J, Li XY, Fenf DF, Pan DC (2010) Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. J Trauma 69(6):1610–1618

    Article  PubMed  CAS  Google Scholar 

  36. Lima DP, Sima FC, Abib SC, Figueiredo LF de (2008) Quality of life and neuropsychological changes in mild head trauma. Late analysis and correlation with S100B protein and cranial CT scan performed at hospital admission. Injury 39:604–611

    Article  PubMed  Google Scholar 

  37. Ling KH, Brautigan PJ, Hahn CN et al (2011) Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics 12:176

    Article  PubMed  CAS  Google Scholar 

  38. Ma M, Lindsell CJ, Rosenberry CM et al (2008) Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med 26:763–776

    Article  PubMed  Google Scholar 

  39. Madathil SK, Nelson PT, Saatman KE, Wilfred BR (2011) MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 33(1):21–26

    Article  PubMed  CAS  Google Scholar 

  40. Magnoni S, Esparza TJ, Conte V et al (2012) Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain 135(4):1268–1280

    Article  PubMed  Google Scholar 

  41. Mittenberg W, Strauman S (2000) Diagnosis of mild head injury and the postconcussion syndrome. J Head Trauma Rehabil 15(2):783–791

    Article  PubMed  CAS  Google Scholar 

  42. Möllmann FT (2006) Epidemiologie, Unfallursachen und akutklinische Initialversorgung beim Schädel-Hirn-Trauma: Eine regionale multizentrische prospektive Studie zur Versorgung Schädel-Hirn traumatisierter Patienten in der Bundesrepublik Deutschland. Med. Dissertation, Westfälische Wilhelms-Universität Münster

  43. Mondello S, Linnet A, Buki A et al (2012) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70(3):666–675

    PubMed  Google Scholar 

  44. Mondello S, Jeromin A, Buki A et al (2012) Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma 29(6):1096–1104

    Article  PubMed  Google Scholar 

  45. Mott TF, McConnon ML, Rieger BP (2012) Subacute to chronic mild traumatic brain injury. Am Fam Physician 86(11):1045–1051

    PubMed  Google Scholar 

  46. Nygaard O, Langbakk B, Romner B (1998) Neuron-specific enolase concentrations in serum and cerebrospinal fluid in patients with no previous history of neurological disorder. Scand J Clin Lab Invest 58:183–186

    Article  PubMed  CAS  Google Scholar 

  47. Nygren De BC, Fredman P, Lundin A et al (2004) S100 in mild traumatic brain injury. Brain Inj 18:671–683

    Article  Google Scholar 

  48. Oliva D, Calì L, Feo S, Giallongo A (1991) Complete structure of the human gene encoding neuron-specific enolase. Genomics 10(1):157–165

    Article  PubMed  CAS  Google Scholar 

  49. Olver J (2005) Traumatic brain injury – the need for support and follow up. Aust Fam Physician 34(4):269–271

    PubMed  Google Scholar 

  50. Otto M, Holthusen S, Bahn E et al (2000) Boxing and running lead to a rise in serum levels of S-100B protein. Int J Sports Med 21:551–555

    Article  PubMed  CAS  Google Scholar 

  51. Papa L, Akinyi L, Liu MC et al (2010) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38:138–144

    Article  PubMed  CAS  Google Scholar 

  52. Papa L, Lewis LM, Falk JL et al (2011) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59(6):471–483

    Article  PubMed  Google Scholar 

  53. Pardes Berger R, Adelson PD, Richichi R, Kochanek PM (2006) Serum biomarkers after traumatic and hypoxemic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury. Dev Neurosci 28:327–335

    Article  Google Scholar 

  54. Pelinka LE, Kroepfl A, Schmidhammer R et al (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57:1006–1012

    Article  PubMed  CAS  Google Scholar 

  55. Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res 87:1435–1448

    Article  PubMed  CAS  Google Scholar 

  56. Redell JB, Moore AN, Ward NH III et al (2010) Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 27:2147–2156

    Article  PubMed  Google Scholar 

  57. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ (1996) Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 10:471–476

    Article  PubMed  CAS  Google Scholar 

  58. Ryan LM, Warden DL (2003) Post concussion syndrome. Int Rev Psychiatry 15(4):310–316

    Article  PubMed  Google Scholar 

  59. Saatman KE, Duhaime AC, Bullock R et al (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738

    Article  PubMed  Google Scholar 

  60. Schmechel D, Marangos PJ, Brightman M (1978) Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836

    Article  PubMed  CAS  Google Scholar 

  61. Schöler N, Langer C, Dohner H et al (2010) Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 38:1126–1130

    Article  PubMed  Google Scholar 

  62. Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  PubMed  CAS  Google Scholar 

  63. Stalnacke BM, Bjornstig U, Karlsson K, Sojka P (2005) One-year follow-up of mild traumatic brain injury: post-concussion symptoms, disabilities and life satisfaction in relation to serum levels of S-100B and neurone-specific enolase in acute phase. J Rehabil Med 37:300–305

    Article  PubMed  Google Scholar 

  64. Topolovec-Vranic J, Pollmann-Mudryj MA, Ouchterlony D et al (2011) The value of serum biomarkers in prediction models of outcome after mild traumatic brain injury. J Trauma 71:478–486

    Article  Google Scholar 

  65. Uchino Y, Okimura Y, Tanaka M et al (2001) Computed tomography and magnetic resonance imaging of mild head injury – is it appropriate to classify patients with Glasgow Coma Scale score of 13–15 as „mild injury“? Acta Neurochir (Wien) 143:1031–1037

    Google Scholar 

  66. Unden J, Romner B (2009) A new objective method for CT triage after minor head injury – serum S100B. Scand J Clin Lab Invest 69:13–17

    Article  PubMed  CAS  Google Scholar 

  67. Verma N, Karmakar M, Singh KP, Smita S (2013) Structural and dynamic insights into S100B protein activity inhibition by melittin for the treatment of epilepsy. Int J Comp App NSAAILS 1:55–60

    Google Scholar 

  68. Vos PE, Lamers KJ, Hendriks JC et al (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62:1303–1310

    Article  PubMed  CAS  Google Scholar 

  69. Vos PE, Jacobs B, Andriessen TM et al (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75:1786–1793

    Article  PubMed  CAS  Google Scholar 

  70. Williams DH, Levin HS, Eisenberg HM (1990) Mild head injury classification. Neurosurgery 27:422–428

    Article  PubMed  CAS  Google Scholar 

  71. Woertgen C, Rothoerl RD, Holzschuh M et al (1997) Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien) 139:1161–1164

    Google Scholar 

  72. Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37:417–429

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

The supplement containing this article is not sponsored by industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Biberthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanke-Jellinek, L., Biberthaler, P. Serummarker nach Schädel-Hirn Trauma. Trauma Berufskrankh 15 (Suppl 2), 107–114 (2013). https://doi.org/10.1007/s10039-013-1957-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-013-1957-2

Schlüsselwörter

Keywords

Navigation