Skip to main content
Log in

Kallusaugmentation mit konzentriertem Beckenkammaspirat

Erste Ergebnisse beim posttraumatischen Segmentdefekt

Callus augmentation with concentrated bone marrow aspirate

Initial results for posttraumatic segment defects

  • Leitthema
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Die Beschleunigung der Konsolidierungsphase und das Vermeiden von Regeneratinsuffizienzen sind v. a. bei komplexen posttraumatischen Fällen von hoher klinischer Relevanz. Die Verwendung eines konzentrierten Beckenkammaspirats (BMAC) als zellbasierte Augmentation von Pseudarthrosen und Knochenzysten zeigte erste gute klinische Erfolge in der Literatur. Es wird über erste Ergebnisse der BMAC-Anwendung beim Segmenttransport berichtet. Bislang konnten 14 Patienten mit einem posttraumatischen Segmentdefekt der Tibia von durchschnittlich 79 mm (44–126 mm) in die Studie eingeschlossen werden. Bei einem Heilungsindex von 36±8,7 Tagen/cm konnten 12 Patienten erfolgreich behandelt werden. Bei 2 Patienten mit Regeneratinsuffizienz musste eine plattenosteosynthetische Stabilisierung vorgenommen werden. Gegenteilige Effekte durch die Injektion wurden nicht beobachtet. Das BMAC-Verfahren ist nach diesen ersten Ergebnissen und in Übereinstimmung mit der Literatur ein sicheres und intraoperativ einfach durchführbares Verfahren. Ob dadurch die Regeneratkonsolidierung tatsächlich beschleunigt und die Rate an Regeneratinsuffizienzen gesenkt werden, kann wegen der noch kleinen Fallzahl noch nicht beantwortet werden.

Abstract

Accelerating the consolidation phase during distraction osteogenesis and enhancing regeneration bone healing to prevent callus insufficiency is of great clinical relevance especially in complex posttraumatic cases. The use of a concentrated bone marrow aspirate (BMAC) as a cellular augmentation for poor healing bone sites showed good preliminary results in the recent literature. The aim of this study was to investigate the potential of BMAC for percutaneous augmentation of regeneration. This article reports the preliminary results of 14 patients with an average posttraumatic segmental bone defect of 79 mm (range 44-126 mm). In 12 cases regeneration bone healing was achieved with a mean healing index of 36±8.7 days/cm, and without the need for further operations. In two cases percutaneous plate fixation was needed to stabilize insufficient regeneration. No adverse effects were observed with the BMAC procedure. Based on these preliminary results percutaneous BMAC transplantation is a safe procedure without compromising regeneration or the surrounding soft tissue. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regeneration healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Amann B, Luedemann C, Ratei R et al (2009) Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 18:371–380

    Article  PubMed  Google Scholar 

  2. Aronson J, Harrison Bh, Stewart Cl et al (1989) The histology of distraction osteogenesis using different external fixators. Clin Orthop Relat Res 241:106–116

    PubMed  Google Scholar 

  3. Bernstein A, Mayr Ho, Hube R (2010) Can bone healing in distraction osteogenesis be accelerated by local application of IGF-1 and TGF-beta1? J Biomed Mater Res B Appl Biomater 92:215–225

    PubMed  Google Scholar 

  4. Bobroff G, Gold S, Zinar D (2003) Ten year experience with use of Ilizarov bone transport for tibial defects. Bull Hosp Jt Dis 61:101–107

    PubMed  Google Scholar 

  5. Calori G, Giannoudis P (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42:1191–1193

    Article  PubMed  Google Scholar 

  6. Catagni M, Guerreschi F, Lovisetti L (2011) Distraction osteogenesis for bone repair in the 21st century: lessons learned. Injury 42:580–586

    Article  PubMed  Google Scholar 

  7. Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270

    PubMed  Google Scholar 

  8. Eingartner C, Coerper S, Fritz J et al (1999) Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop 23:253–259

    Article  PubMed  CAS  Google Scholar 

  9. Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand 64:671–672

    Article  PubMed  CAS  Google Scholar 

  10. Garnavos C, Mouzopoulos G, Morakis E (2010) Fixed intramedullary nailing and percutaneous autologous concentrated bone-marrow grafting can promote bone healing in humeral-shaft fractures with delayed union. Injury 41:563–567

    Article  PubMed  Google Scholar 

  11. Gessmann J, Köller M, Godry H et al (2012) Regenerate augmentation with bone marrow concentrate after traumatic bone loss. Orthop Rev (Pavia) 4:62–66

    Google Scholar 

  12. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury [Suppl 4] 38:S3–6

    Google Scholar 

  13. Hamanishi C, Yoshii T, Totani Y et al (1994) Bone mineral density of lengthened rabbit tibia is enhanced by transplantation of fresh autologous bone marrow cells. An experimental study using dual X-ray absorptiometry. Clin Orthop Relat Res 303:250–255

    PubMed  Google Scholar 

  14. Hermann PC, Huber SL, Herrler T et al (2008) Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant 16:1059–1069

    Article  PubMed  Google Scholar 

  15. Hernigou P, Poignard A, Beaujean F et al (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    Article  PubMed  Google Scholar 

  16. Jager M, Jelinek EM, Wess KM et al (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43

    Article  PubMed  Google Scholar 

  17. Jager M, Hernigou P, Zilkens C et al (2010) Zelltherapie bei Knochenheilungsstörungen. Orthopade 39:449–463

    Article  PubMed  CAS  Google Scholar 

  18. Jager M, Herten M, Fochtmann U et al (2010) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29:173–180

    Article  PubMed  Google Scholar 

  19. Kitoh H, Kitakoji T, Tsuchiya H et al (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis – a preliminary result of three cases. Bone 35:892–898

    Article  PubMed  Google Scholar 

  20. Kitoh H, Kitakoji T, Tsuchiya H et al (2007) Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop 27:629–634

    Article  PubMed  Google Scholar 

  21. Kitoh H, Kitakoji T, Tsuchiya H et al (2007) Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone 40:522–528

    Article  PubMed  Google Scholar 

  22. Li G, Bouxsein Ml, Luppen C et al (2002) Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J Orthop Res 20:779–788

    Article  PubMed  CAS  Google Scholar 

  23. Liodakis E, Kenawey M, Krettek C et al (2010) Comparison of 39 post-traumatic tibia bone transports performed with and without the use of an intramedullary rod: the long-term outcomes. Int Orthop 35:1397–1402

    Article  PubMed  Google Scholar 

  24. Little DG, Kiely P (2007) Enhancements of regenerate bone healing. In: Rozbruch SR, Ilizarov S (Hrsg) Limb lengthening and reconstruction surgery. Informa Healthcare, New York, S 53–67

  25. Mekhail AO, Abraham E, Gruber B et al (2004) Bone transport in the management of posttraumatic bone defects in the lower extremity. J Trauma 56:368–378

    Article  PubMed  Google Scholar 

  26. Mizumoto Y, Moseley T, Drews M et al (2003) Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am [Suppl 3] 85-A:124–130

  27. Murawski CD, Kennedy JG (2011) Percutaneous internal fixation of proximal fifth metatarsal jones fractures (zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes. Am J Sports Med 39:1295–1301

    Article  PubMed  Google Scholar 

  28. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79:1699–1709

    PubMed  CAS  Google Scholar 

  29. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14:76–85

    Article  PubMed  CAS  Google Scholar 

  30. Patterson TE, Kumagai K, Griffith L et al (2008) Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am [Suppl 1] 90:111–119

    Google Scholar 

  31. Rauch F, Lauzier D, Croteau S et al (2000) Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone 27:453–459

    Article  PubMed  CAS  Google Scholar 

  32. Reigstad A (1997) Soft tissue defects and bone loss in tibial fractures – treatment with free flaps and bone transport. Acta Orthop Scand 68:615–622

    Article  PubMed  CAS  Google Scholar 

  33. Sauerbier S, Stricker A, Kuschnierz J et al (2010) In vivo comparison of hard tissue regeneration with human mesenchymal stem cells processed with either the FICOLL method or the BMAC method. Tissue Eng Part C Methods 16:215–223

    Article  PubMed  CAS  Google Scholar 

  34. Schmelzeisen R, Gutwald R, Oshima T et al (2010) Making bone II: maxillary sinus augmentation with mononuclear cells – case report with a new clinical method. Br J Oral Maxillofac Surg 49:480–482

    Article  PubMed  Google Scholar 

  35. Schmidt HGK, Wurm M, Hadler D et al (2002) Verlängerungstechniken und Möglichkeiten des Segmenttransports im Ringsystem nach Ilizarov. Trauma Berufskrankh 4:413–426

    Article  Google Scholar 

  36. Seybold D, Gessmann J, Godry H et al (2011) The segmental bone transport with an intramedullary cable for the therapy of tibial bone defects. Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin

  37. Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18:980–982

    PubMed  CAS  Google Scholar 

  38. Tsubota S, Tsuchiya H, Shinokawa Y et al (1999) Transplantation of osteoblast-like cells to the distracted callus in rabbits. J Bone Joint Surg Br 81:125–129

    Article  PubMed  CAS  Google Scholar 

  39. Watson JT, Kuldjanov D (2007) Bone defects. In: Rozbruch SR, Ilizarov S (Hrsg) Limb lengthening and reconstruction surgery. Informa Healthcare, New York, S 185–202

  40. Windhagen H, Witte F, Thorey F et al (2004) Injizierbare Trägersysteme für die Wachstumsfaktorapplikation zur minimal-invasiven Knochenheilungsstimulation. Orthopade 33:1378–1385

    Article  PubMed  CAS  Google Scholar 

  41. Yin D, Wang Z, Gao Q et al (2009) Determination of the fate and contribution of ex vivo expanded human bone marrow stem and progenitor cells for bone formation by 2.3ColGFP. Mol Ther 17:1967–1978

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Geßmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geßmann, J., Köller, M., Dudda, M. et al. Kallusaugmentation mit konzentriertem Beckenkammaspirat . Trauma Berufskrankh 14, 103–108 (2012). https://doi.org/10.1007/s10039-012-1885-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-012-1885-6

Schlüsselwörter

Keywords

Navigation