Skip to main content
Log in

Positronenemissionstomographie-Computertomographie (PET-CT)

Indikation bei Osteitis

Positron emission tomography computed tomography (PET-CT)

Indications for osteitis

  • Leitthema
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Trotz der Fortschritte in der operativen Therapie von Frakturen (Einsatz von Antibiotika, gewebeschonenden Techniken und Implantaten) können weiterhin postoperative Infektionen und in deren Folge Osteitiden auftreten. Die zielgerichtete und effektive Therapie von Osteitiden erfordert die konsequente Resektion des infizierten Knochengewebes. Allerdings ist der Infektionsherd gerade bei chronischen posttraumatischen Situationen meist schwierig zu identifizieren. Im Diagnostikalgorithmus wird mit anamnestischen, labordiagnostischen und bildgebenden Verfahren eine Eingrenzung des Problems angestrebt. Keine Methode erlaubt es jedoch, die Diagnose der Osteitis zuverlässig zu stellen. Mit der Positronenemissionstomographie-Computertomographie (PET-CT) steht eine Technik zur Verfügung, welche neben der Darstellung der Aktivität eines suspekten Herdes auch die exakte anatomische Zuordnung erlaubt. Damit wird eine zielgerichtete Operationsplanung möglich, und der größtmögliche Erhalt von vitalem Gewebe kann angestrebt werden. Die Limitierung der Methode ergibt sich durch die lang dauernde Aktivitätsanreicherung nach Traumata und Operationen, sodass die Indikation auf die chronische Osteitis begrenzt bleiben wird.

Abstract

Despite immense progress in the operative therapy of fractures (e.g. use of antibiotics, tissue-preserving techniques and implants) postoperative infections can still occur and result in osteitis. The targeted and effective therapy of osteitis necessitates a thorough resection of infected bone tissue. However, the center of infection is often difficult to identify especially in chronic posttraumatic situations. In the diagnostic algorithm a narrowing down of the problem is strived for with the assistance of the anamnesis, laboratory diagnostics and imaging procedures. However, there is no method which can be used to make a reliable diagnosis. Positron-emission tomography computed tomography (PET-CD) is a method by which an exact anatomical assignment can be made and additionally the activity of a suspected lesion can be visualized. This allows a targeted planning of surgery and the largest possible retention of vital tissue to be achieved. Limitations of the method arise due to the long lasting activity enrichment following trauma and operations so that the indications for chronic osteitis will remain limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bachmann G, Rossler R (1993) MRT in the diagnosis of mandibular osteomyelitis following radiotherapy. Rofo 159:347–354

    Article  PubMed  CAS  Google Scholar 

  2. Basu S, Chryssikos T, Moghadam-Kia S et al (2009) Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med 39:36–51

    Article  PubMed  Google Scholar 

  3. Crim JR, Seeger LL (1994) Imaging evaluation of osteomyelitis. Crit Rev Diagn Imaging 35:201–256

    PubMed  CAS  Google Scholar 

  4. De Winter F, Vogelaers D, Gemmel F et al (2002) Promising role of 18-F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257

    Article  CAS  Google Scholar 

  5. Egol KA, Ong CC, Walsh M et al (2008) Early complications in proximal humerus fractures (OTA types 11) treated with locked plates. J Orthop Trauma 22:159–164

    Article  PubMed  Google Scholar 

  6. El-Maghraby TA, Moustafa HM, Pauwels EK (2006) Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging 50:167–192

    PubMed  CAS  Google Scholar 

  7. Faisham WI, Nordin S, Aidura M (2001) Bacteriological study and its role in the management of open tibial fracture. Med J Malaysia 56:201–206

    PubMed  CAS  Google Scholar 

  8. Gagey O, Doyon F, Dellamonica P et al (1999) Infection prophylaxis in open leg fractures. Comparison of a dose of pefloxacin and 5 days of cefazolin-oxacillin. A randomized study of 616 cases. Rev Chir Orthop Reparatrice Appar Mot 85:328–336

    PubMed  CAS  Google Scholar 

  9. Goebel M, Rosa F, Tatsch K et al (2007) Diagnostik der chronischen Osteitis des Extremitätenskeletts. Stellenwert der F-18 FDG-PET. Unfallchirurg 110:859–866

    Article  PubMed  CAS  Google Scholar 

  10. Guhlmann A, Brecht-Krauss D, Suger G et al (1998) Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 206:749–754

    PubMed  CAS  Google Scholar 

  11. Guhlmann A, Brecht-Krauss D, Suger G et al (1998) Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 39:2145–2152

    PubMed  CAS  Google Scholar 

  12. Hakim SG, Bruecker CW, Jacobsen HC et al (2006) The value of FDG-PET and bone scintigraphy with SPECT in the primary diagnosis and follow-up of patients with chronic osteomyelitis of the mandible. Int J Oral Maxillofac Surg 35:809–816

    Article  PubMed  CAS  Google Scholar 

  13. Hartmann A, Eid K, Dora C et al (2007) Diagnostic value of 18 F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 34:704–714

    Article  PubMed  Google Scholar 

  14. Helfet DL, Howey T, Dipasquale T et al (1994) The treatment of open and/or unstable tibial fractures with an unreamed double-locked tibial nail. Orthop Rev Suppl:9–17

    PubMed  CAS  Google Scholar 

  15. Hess S, Vind SH, Hoilund-Carlsen PF (2008) PET/CT for diagnosis of infections. Ugeskr Laeger 170:3404–3407

    PubMed  Google Scholar 

  16. Kakar S, Tornetta P III (2007) Open fractures of the tibia treated by immediate intramedullary tibial nail insertion without reaming: a prospective study. J Orthop Trauma 21:153–157

    Article  PubMed  CAS  Google Scholar 

  17. Keidar Z, Militianu D, Melamed E et al (2005) The diabetic foot: initial experience with 18 F-FDG PET/CT. J Nucl Med 46:444–449

    PubMed  Google Scholar 

  18. Koort JK, Makinen TJ, Knuuti J et al (2004) Comparative 18 F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  19. Lau TW, Leung F, Chan CF, Chow SP (2008) Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures. Int Orthop 32:697–703

    Article  PubMed  CAS  Google Scholar 

  20. Makinen TJ, Lankinen P, Poyhonen T et al (2005) Comparison of 18 F-FDG and 68 Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging 32:1259–1268

    Article  PubMed  Google Scholar 

  21. Meller J, Koster G, Liersch T et al (2002) Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging 29:53–60

    Article  PubMed  CAS  Google Scholar 

  22. Meller J, Sahlmann CO, Liersch T et al (2007) Nonprosthesis orthopedic applications of (18)F fluoro-2-deoxy-D-glucose PET in the detection of osteomyelitis. Radiol Clin North Am 45:719–733

    Article  PubMed  Google Scholar 

  23. Nguyen BD, Roarke MC, Ram PC (2005) Transitional cell carcinoma with metastases to spermatic vein and spermatic cord: PET/CT imaging. Clin Nucl Med 30:708–710

    Article  PubMed  Google Scholar 

  24. Nguyen BD, Ram PC, Roarke MC (2006) Hip arthroplasty with mass-like pelvic granulomatous disease: PET imaging. Clin Nucl Med 31:30–32

    Article  PubMed  Google Scholar 

  25. Pankovich AM, Tarabishy IE, Yelda S (1981) Flexible intramedullary nailing of tibial-shaft fractures. Clin Orthop Relat Res 160:185–195

    PubMed  Google Scholar 

  26. Patzakis MJ, Wilkins J, Moore TM (1983) Use of antibiotics in open tibial fractures. Clin Orthop Relat Res 178:31–35

    PubMed  Google Scholar 

  27. Paul D (1985) Significance of fracture form and bone necrosis for the treatment of open tibial fracture. Zentralbl Chir 110:729–738

    PubMed  CAS  Google Scholar 

  28. Pineda C, Vargas A, Rodriguez AV (2006) Imaging of osteomyelitis: current concepts. Infect Dis Clin North Am 20:789–825

    Article  PubMed  Google Scholar 

  29. Siebert CH, St A, Rinke F et al (1995) Secondary plate osteosynthesis of open fractures of the lower extremity – still a therapeutic alternative!? Zentralbl Chir 120:32–36

    PubMed  CAS  Google Scholar 

  30. Stabler A, Schedel H, Seiderer M (1992) MRT in osteomyelitis: detection of bone sequestration with Gd-DTPA. Bildgebung 59:152–154

    PubMed  CAS  Google Scholar 

  31. Strobel K, Hany TF, Exner GU et al (2006) PET/CT of a Brodie abscess. Clin Nucl Med 31:210

    Article  PubMed  Google Scholar 

  32. Strobel K, Exner UE, Stumpe KD et al (2008) The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18 F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 35:2000–2008

    Article  PubMed  CAS  Google Scholar 

  33. Stumpe KD, Strobel K (2006) 18 F FDG-PET imaging in musculoskeletal infection. Q J Nucl Med Mol Imaging 50:131–142

    PubMed  CAS  Google Scholar 

  34. Stumpe KD, Strobel K, Stumpe KDM, Strobel K (2006) 18 F FDG-PET imaging in musculoskeletal infection. Q J Nucl Med Mol Imaging 50:131–142

    PubMed  CAS  Google Scholar 

  35. Sureshbabu W, Mawlawi O (2005) PET/CT imaging artifacts. J Nucl Med Technol 33:156–161

    PubMed  Google Scholar 

  36. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury [Suppl 2] 37:59–66

    Google Scholar 

  37. Zhuang H, Duarte PS, Pourdehand M et al (2000) Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 25:281–284

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Militz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Militz, M., Weidemann, H. & la Fougère, C. Positronenemissionstomographie-Computertomographie (PET-CT) . Trauma Berufskrankh 14, 16–20 (2012). https://doi.org/10.1007/s10039-011-1833-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-011-1833-x

Schlüsselwörter

Keywords

Navigation