Skip to main content
Log in

Segmenttransport

Kritische Analyse der Techniken, Komplikationen, Non-Docking-Problematik

Segmental bone transport

Critical analysis of the techniques, complications, and “non-docking” problems

  • Übersichten
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Die Segmentresektion großer Röhrenknochen stellt bei infizierten Defekten mit einer Länge über 3 cm die Methode der Wahl zur Sanierung von Osteitiden dar. Zur Rekonstruktion der Defekte hat sich der Segmenttransport als Verfahren der Wahl etabliert. Die knöcherne Rekonstruktion gelingt nur bei ausreichender Stabilität, suffizienter Durchblutung und Weichteildeckung sowie korrekter Transportgeschwindigkeit. Unter den genannten Bedingungen kann in den meisten Fällen mit Vollbelastung eine Stimulation der Knochenregeneration erreicht werden. Die Auswahl der Patienten, die interdisziplinäre Therapie und die ambulante Betreuung sollten in Zentren erfolgen, die über die erforderlichen Ressourcen verfügen.

Abstract

Segmental resection of the long bones represents the method of choice in cases of infected defects longer than 3 cm. Distraction osteogenesis has become established as the procedure of choice for reconstruction of bone defects. Bone reconstruction is only successful when sufficient stability, blood circulation, and soft tissue coverage as well as correct transport speed are chosen. Under the aforementioned conditions, in most cases stimulation of bone regeneration can be achieved with full weight-bearing. Patient selection, interdisciplinary treatment, and outpatient management should be conducted in medical centers that have the necessary resources at their disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Brutscher R, Rahn BA, Ruter A, Perren SM (1993) The role of corticotomy and osteotomy in the treatment of bone defects using the Ilizarov technique. J Orthop Trauma 7:261–269

    Article  PubMed  CAS  Google Scholar 

  2. Claes L, Ruter A, Mayr E (2005) Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop 430:189–194

    PubMed  Google Scholar 

  3. Eckardt H, Bundgaard KG, Christensen KS et al (2003) Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res 21:335–340

    Article  PubMed  CAS  Google Scholar 

  4. Eckardt H, Lind M, Christensen KS et al (2005) Mid-tibial distraction osteogenesis redistributes bone blood flow: a microsphere study in rabbits. Acta Orthop Scand 76:459–464

    Article  Google Scholar 

  5. Fischgrund J, Paley D, Suter C (1994) Variables affecting time to bone healing during limb lengthening. Clin Orthop 301:31–37

    PubMed  Google Scholar 

  6. Giannoudis PV, Hinsche AF, Cohen A et al (2003) Segmental tibial fractures: an assessment of procedures in 27 cases. Injury 34:756–762

    Article  PubMed  CAS  Google Scholar 

  7. Giebel G (1992) Callus distraction. Thieme, Stuttgart New York

  8. Glatzel U, Heppert V, Wentzensen A (2002) Kallusdistraktion. Trauma Berufskrankh 4:404–412

    Article  Google Scholar 

  9. Gonzalez F, Arevalo R, Coretti S et al (2005) Pulsed electromagnetic stimulation of regenerate bone in lengthening procedures. Acta Orthop Belg 71:571–576

    Google Scholar 

  10. Guerreschi F, Azzam W, Camagni M et al (2010) Tetrafocal bone transport of the tibia with circular external fixation: a case report. J Bone Joint Surg Am 92:190–195

    Article  PubMed  Google Scholar 

  11. Hamanishi C, Yasuwaki Y, Kikuchi H et al (1992) Classification of the callus in limb lengthening. Radiographic study of 35 limbs. Acta Orthop Scand 63:430–433

    Article  PubMed  CAS  Google Scholar 

  12. Hankemeier S, Bastian L, Gosling T, Krettek C (2004) Principles of callus distraction. Unfallchirurg 107:945–958

    Article  PubMed  CAS  Google Scholar 

  13. Heiss C, Meissner S, Meyer C et al (2005) Häufigkeit und Schweregrad von Kallusdefekten. Orthopade 34:603–611

    Article  PubMed  CAS  Google Scholar 

  14. Hessmann M, Rommens PM, Hainson K (1998) Callus distraction of femur and tibia. Experiences with the mono-fixateur – indications for procedural changes. Unfallchirurg 101:370–376

    Article  PubMed  CAS  Google Scholar 

  15. Hofmann G, Mückley T, Diefenbeck M (2005) Knochenersatz durch Kallusdistraktion an der unteren Extremität. Trauma Berufskrankh 7:282–289

    Article  Google Scholar 

  16. Hungerer S, Augat P, Buehren V (2008) Elektromagnetische Verfahren bei Knochenheilungsstörungen. Trauma Berufskrankh 10:219–225

    Article  Google Scholar 

  17. Ilizarov GA (1988) The principles of the Ilizarov method. Bull Hosp Jt Dis 48:1–11

    CAS  Google Scholar 

  18. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop 250:8–26

    PubMed  Google Scholar 

  19. Ilizarov GA, Deviatov AA (1969) Surgical lengthening of the shin with simultaneous correction of deformities. Ortop Travmatol Protez 30:32–37

    PubMed  CAS  Google Scholar 

  20. Ilizarov GA, Lediaev VI (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestn Khir Im I I Grek 102:77–84

    PubMed  CAS  Google Scholar 

  21. Ilizarov GA, Kuznetsova AB, Peschanskii VS et al (1984) Blood vessels in different systems of limb traction (experimental study). Arkh Anat Gistol Embriol 86:49–55

    PubMed  CAS  Google Scholar 

  22. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop 29:643–649

    Article  PubMed  Google Scholar 

  23. Kocaoglu M, Eralp L, Rashid HU et al (2006) Reconstruction of segmental bone defects due to chronic osteomyelitis with use of an external fixator and an intramedullary nail. J Bone Joint Surg Am 88:2137–2145

    Article  PubMed  Google Scholar 

  24. Kucukkaya M, Armagan R, Kuzgun U (2009) The new intramedullary cable bone transport technique. J Orthop Trauma 23:531–536

    Article  PubMed  Google Scholar 

  25. Luna GF, Lopez AR, Meschian CS et al (2005) Pulsed electromagnetic stimulation of regenerate bone in lengthening procedures. Acta Orthop Belg 71:571–576

    Google Scholar 

  26. Marotti G, Zallone AZ, Ledda M (1976) Number, size and arrangement of osteoblasts in osteons at different stages of formation. Calcif Tissue Res [Suppl] 21:96–101

    Google Scholar 

  27. Mayr E, Laule A, Suger G et al (2001) Radiographic results of callus distraction aided by pulsed low-intensity ultrasound. J Orthop Trauma 15:407–414

    Article  PubMed  CAS  Google Scholar 

  28. Oh CW, Song HR, Roh JY et al (2008) Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia. Arch Orthop Trauma Surg 128:801–808

    Article  PubMed  Google Scholar 

  29. Raschke MJ, Mann JW, Oedekoven G, Claudi BF (1992) Segmental transport after unreamed intramedullary nailing. Preliminary report of a „Monorail“ system. Clin Orthop 282:233–240

    PubMed  Google Scholar 

  30. Skripitz R, Aspenberg P (2004) Parathyroid hormone – a drug for orthopedic surgery? Acta Orthop Scand 75:654–662

    Article  PubMed  Google Scholar 

  31. Skripitz R, Andreassen TT, Aspenberg P (2000) Parathyroid hormone (1–34) increases the density of rat cancellous bone in a bone chamber. A dose-response study. J Bone Joint Surg Br 82:138–141

    Article  PubMed  CAS  Google Scholar 

  32. Song HR, Cho SH, Koo KH et al (1998) Tibial bone defects treated by internal bone transport using the Ilizarov method. Int Orthop 22:293–297

    Article  PubMed  CAS  Google Scholar 

  33. Strecker W, Keppler P, Kinzl L (1999) Die treppenförmige subtrochantäre Verlängerungsosteotomie des Oberschenkels. Oper Orthop Traumatol 11:1–10

    Article  PubMed  CAS  Google Scholar 

  34. Windhagen H, Witte F, Thorey F et al (2004) Injectable carrier system for growth factor application in minimally invasive stimulation of bone healing. Orthopade 33:1378–1385

    Article  PubMed  CAS  Google Scholar 

  35. Wolf S, Janousek A, Pfeil J et al (1998) The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin Biomech (Bristol, Avon) 13:359–364

    Google Scholar 

  36. Zhang X, Duan L, Li Z, Chen X (2007) Callus distraction for the treatment of acquired radial club-hand deformity after osteomyelitis. J Bone Joint Surg Br 89:1515–1518

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Militz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Militz, M. Segmenttransport. Trauma Berufskrankh 13 (Suppl 1), 30–35 (2011). https://doi.org/10.1007/s10039-010-1687-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-010-1687-7

Schlüsselwörter

Keywords

Navigation