Skip to main content
Log in

Wirbelsäulenverletzungen und Unfallfolgezustände

Navigierte Operationsverfahren

Spinal injuries and accident sequelae

Navigation-assisted surgical methods

  • Leitthema
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Computerunterstützte Verfahren sollen die intraoperative Orientierung erleichtern, die Genauigkeit erhöhen, die Invasivität vermindern und die Emission von ionisierenden Strahlen reduzieren. In der Traumatologie werden sie seit über 15 Jahren eingesetzt. Es existieren im Wesentlichen 3 Formen der Navigation: CT-basierte (CT: Computertomographie) Navigation, die auf einem präoperativen CT fußt, 2D-Navigation, die auf C-Arm-Bildern beruht, sowie 3D-Navigation, deren Grundlage ein intraoperativer 3D-Scan ist. In der Literatur sind die überlegene Genauigkeit für Instrumentierungen an der Lenden- und der Halswirbelsäule belegt, ebenso eine Reduktion der Emission ionisierender Strahlung. Ein Beweis für eine erhöhte Genauigkeit im Bereich der Brustwirbelsäule steht an größeren Kollektiven und mit prospektiven Studiendesigns noch aus. Navigation kann ein wertvolles Instrument zur Visualisierung der nur schwer exponierbaren und intraoperativ radiologisch darstellbaren Anatomie der Wirbelsäule (WS) sein, in jedem Fall müssen jedoch die klassischen Techniken beherrscht werden. Die intraoperative 3D-Scan-Technologie mit automatischer Registrierung ist als Goldstandard der WS-Navigation anzusehen.

Abstract

The aim of computer-assisted navigation procedures is to increase the anatomical orientation intraoperatively, to improve the accuracy, to minimize the invasiveness and to reduce the emission of radiation. In the field of orthopedic surgery navigation has been used for over 15 years and these techniques are particularly widely used in spinal surgery. There are three major applications of navigation: CT-based (computed tomography) navigation which needs a preoperative CT scan, 2D navigation which is based on standard X-ray images of a C-arm during surgery and 3D navigation which requires an intraoperatively performed C-arm based 3D scan. Higher accuracy has been proven for instrumentation of the lumbar and cervical spine and reduced emission of radiation could be demonstrated. Higher accuracy for pedicle screw insertions of the thoracic spine is still not proven in prospective studies with sufficient numbers of pedicle screws. Navigation systems provide additional information for better anatomical orientation in spinal surgery and can reduce intraoperative fluoroscopy time. Intraoperative 3D scan technology with automatic registration is the perfect tool in spinal surgery today. Knowledge of the classical techniques remains crucial for the safety of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Amiot LP, Lang K, Putzier M et al (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25:606–614

    Article  CAS  PubMed  Google Scholar 

  2. Arand M, Hartwig E, Kinzl L, Gebhard F (2001) Spinal navigation in cervical fractures – a preliminary clinical study on Judet-osteosynthesis of the axis. Comput Aided Surg 6:170–175

    CAS  PubMed  Google Scholar 

  3. Assaker R, Cinquin P, Cotten A, Lejeune JP (2001) Image-guided endoscopic spine surgery: Part I. A feasibility study. Spine 26:1705–1710

    Article  CAS  PubMed  Google Scholar 

  4. Berlemann U, Langlotz F, Langlotz U, Nolte LP (1997) Computer-assisted orthopedic surgery. From pedicle screw insertion to further applications. Orthopade 26:463–469

    CAS  PubMed  Google Scholar 

  5. Carl AL, Khanuja HS, Gatto CA et al (2001) In vivo pedicle screw placement: image-guided virtual vision. J Spinal Disord Tech 13:225–229

    Google Scholar 

  6. Choi WW, Green BA, Levi AD (2000) Computer-assisted fluoroscopic targeting system for pedicle screw insertion. Neurosurgery 47:872–878

    Article  CAS  PubMed  Google Scholar 

  7. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26:347–351

    Article  CAS  PubMed  Google Scholar 

  8. Gebhard F, Kinzl L, Hartwig E, Arand M (2003) Navigation of tumors and metastases in the area of the thoraco-lumbar spine. Unfallchirurg 106:949–955

    CAS  PubMed  Google Scholar 

  9. Gebhard F, Kraus M, Schneider E et al (2003) Radiation dosage in orthopedics – a comparison of computer-assisted procedures. Unfallchirurg 106:492–497

    Article  CAS  PubMed  Google Scholar 

  10. Gebhard FT, Kraus MD, Schneider E et al (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31:2024–2027

    Article  PubMed  Google Scholar 

  11. Holly LT, Bloch O, Johnson JP (2006) Evaluation of registration techniques for spinal image guidance. J Neurosurg Spine 4:323–328

    Article  PubMed  Google Scholar 

  12. Hott JS, Deshmukh VR, Klopfenstein JD et al (2004) Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54:1131–1136

    Article  PubMed  Google Scholar 

  13. Hott JS, Papadopoulos SM, Theodore N et al (2004) Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine 29:2856–2860

    Article  PubMed  Google Scholar 

  14. Ito H, Neo M, Yoshida M et al (2007) Efficacy of computer-assisted pedicle screw insertion for cervical instability in RA patients. Rheumatol Int 27:567–574

    Article  CAS  PubMed  Google Scholar 

  15. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32:E111–E120

    Article  PubMed  Google Scholar 

  16. Laine T, Lund T, Ylikoski M et al (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240

    Article  CAS  PubMed  Google Scholar 

  17. Lekovic GP, Potts EA, Karahalios DG, Hall G (2007) A comparison of two techniques in image-guided thoracic pedicle screw placement: a retrospective study of 37 patients and 277 pedicle screws. J Neurosurg Spine 7:393–398

    Article  PubMed  Google Scholar 

  18. Maier B, Zheng G, Ploss C et al (2004) A CT-free, intra-operative planning and navigation system for minimally invasive anterior spinal surgery – an accuracy study. Comput Aided Surg 12:233–241

    Article  Google Scholar 

  19. Merloz P, Troccaz J, Vouaillat H et al (2007) Fluoroscopy-based navigation system in spine surgery. Proc Inst Mech Eng [H] 221:813–820

    Google Scholar 

  20. Nolte LP, Zamorano LJ, Jiang Z et al (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine 20:497–500

    Article  CAS  PubMed  Google Scholar 

  21. Ohmori K, Kawaguchi Y, Kanamori M et al (2001) Image-guided anterior thoracolumbar corpectomy: a report of three cases. Spine 26:1197–1201

    Article  CAS  PubMed  Google Scholar 

  22. Paramore CG, Dickman CA, Sonntag VK (1996) The anatomical suitability of the C1–2 complex for transarticular screw fixation. J Neurosurg 85:221–224

    Article  CAS  PubMed  Google Scholar 

  23. Rajasekaran S, Kamath V, Shetty AP (2008) Intraoperative Iso-C three-dimensional navigation in excision of spinal osteoid osteomas. Spine 33:E25–E29

    Article  CAS  PubMed  Google Scholar 

  24. Rampersaud YR, Foley KT, Shen AC et al (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645

    Article  CAS  PubMed  Google Scholar 

  25. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359

    Article  CAS  PubMed  Google Scholar 

  26. Seichi A, Takeshita K, Nakajima S et al (2007) Revision cervical spine surgery using transarticular or pedicle screws under a computer-assisted image-guidance system. J Orthop Sci 10:385–390

    Article  Google Scholar 

  27. Thoranaghatte R, Zheng G, Nolte LP (2005) Novel method for registering an endoscope in an operative setup. Conf Proc IEEE Eng Med Biol Soc 4:4349–4352

    PubMed  Google Scholar 

  28. Thoranaghatte RU, Zheng G, Langlotz F, Nolte LP (2005) Endoscope-based hybrid navigation system for minimally invasive ventral spine surgeries. Comput Aided Surg 10:351–356

    Article  PubMed  Google Scholar 

  29. Van Royen BJ, Baayen JC, Pijpers R et al (2005) Osteoid osteoma of the spine: a novel technique using combined computer-assisted and gamma probe-guided high-speed intralesional drill excision. Spine 30:369–373

    Article  Google Scholar 

  30. Visarius H, Gong J, Scheer C et al (1997) Man-machine interfaces in computer assisted surgery. Comput Aided Surg 2:102–107

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, M., Schultheiß, M. & Gebhard, F. Wirbelsäulenverletzungen und Unfallfolgezustände. Trauma Berufskrankh 12, 78–87 (2010). https://doi.org/10.1007/s10039-010-1615-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-010-1615-x

Schlüsselwörter

Keywords

Navigation