Skip to main content
Log in

Topkin®—Eine resorbierbare Folie aus Lactid-Caprolacton

Kinische Anwendung als Wundabdeckung

  • Unfallchirurgie
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Die resorbierbare Folie Topkin® (Fa. Biomet-Merck), welche aus einem Kopolymer aus D,L-Lactid und ε-Caprolacton besteht, wurde bei 71 Spalthautentnahmewunden und 42 Spalthautempfängerbezirken als Wundabdeckung eingesetzt. Die Größe der Spalthautentnahmewunden betrug bis zu 900 cm2, die Ausdehnung der konditionierten Hautweichteildefekte bis 1200 cm2. Zum Vergleich wurden 29 Empfängerbezirke mit Fettgazeverbänden versorgt. Die Schmerzhaftigkeit der Behandlung wurde auf einer visuellen Analogskala (0–100) gemessen und die Zeitdauer für die Verbandswechsel registriert. Bei den Spalthautentnahmewunden kam es zu 2 Komplikationen (Nachblutung, lokale Infektion). Im Bereich der Spalthautempfängerbezirke traten in 5 Fällen lokale Komplikationen auf (1 überschießende Granulation, 2 verbliebene Restdefekte, 1 lokaler Infekt sowie 1 Schorfbildung). Bei 29 Patienten, deren Spalthautempfängerbezirke mit herkömmlichen Fettgazeverbänden behandelt wurden, wurden 8 Wundheilungsstörungen (4 Restdefekte, 3 oberflächliche Transplantatnekrosen und 1 lokaler Infekt) beobachtet. Bei 4 Wunden wurden deutliche Narbenbildungen beobachtet. Die Zeit der Wundheilung bei der Behandlung mit resorbierbarer Folie und Fettgazeverbänden war nicht signifikant unterschiedlich. Die maximale Schmerzhaftigkeit der Folienbehandlung betrug bei den Spalthautentnahmewunden 10,9, bei den kontaminierten Wunden 2,9. Der pflegerische Aufwand für die Wundbehandlung betrug bei den ersten 20 Patienten 4 min/Tag, nach Änderung des Regimes bei den weiteren durchschnittlich 2 min/Tag.

Abstract

The resorbable film Topkin (Biomet-Merck), which consists of a copolymer composed of D,D-lactide and ε-caprolactone was applied to 71 split skin donor sites and 42 split skin grafting sites as wound coverage. The split skin donor sites had an area of up to 900 cm2, and the recipient soft tissue defects covered up to 1200 cm2. For comparison 29 grafting sites were covered with grease gauze dressings. In the split skin donor sites, there were two complications (hematoma, local infection). In split skin grafting sites five complications (one hypertrophic granulation, two residual defects, one local infection, and one scar formation) were observed. Of the 29 patients whose split skin grafting sites were treated with conventional grease gauze bandages, 8 experienced wound healing problems (four residual defects, three superficial graft necroses, and one local infection). Substantial scarring was observed in four wounds. There was no significant difference in wound healing time between treatment with the film and treatment with grease gauze. The maximal pain ratings during the film treatment was 10.9 for the split skin donor sites and 2.9 for the contaminated wounds. Time expenditure for care of the wounds was 4 min/day in the first 20 patients and, after modification of the regime, 2 min/day in the remaining patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3 a
Abb. 4 a

Literatur

  1. Behar D, Juszynski M, Ben Hur N et al. (1986) Omiderm, a new synthetic wound covering: Physical properties and drug permeability studies. J Biomed Mat Res 20: 731–738

    Google Scholar 

  2. Breuing K, Eriksson E, Liu P, Miller DR (1992) Healing of partial thickness porcine skin wounds in a liquid environment. J Surg Res 52: 50–58

    Google Scholar 

  3. Chapman CR, Casey KL, Dubner R et al. (1985) Pain measurement: an overview. Pain 22: 1–31

  4. Davies JWL (1984) Synthetic materials for covering burn wounds: Progress towards perfection. Part II. Longer term substitutes for skin. Burns 10: 104–108

    Google Scholar 

  5. Gogolewski S, Pennings AJ (1983) An artficial skin based on biodegradable mixtures of polylactides and polyurethanes for full-thickness skin wound covering. Makromol Chem, Rapid Commun 4: 675–680

    Google Scholar 

  6. Golan J, Eldad A, Rudensky B et al. (1985) A new temporary synthetic skin substitute. Burns 11:274–280

    Google Scholar 

  7. Heller J (1980) Controlled release of biologically active compounds from bioerodible polymers. Biomaterials 1: 51–57

    Google Scholar 

  8. Hutchinson FG, Furr BJA (1985) Biodegradable polymers for the sustained release of peptides. Biochem Soc Trans 13: 520–523

    Google Scholar 

  9. Hutchinson JJ (1989) Prevalence of wound infection under occlusive dressings: A collective survey of reported research. Wounds 1: 123–133

    Google Scholar 

  10. James JH, Watson ACH (1975) The use of Opsite, a vapour permeable dressing, on skin graft donor sites. Br J Plast Surg 28: 107–110

    Google Scholar 

  11. Jonkman MF, Molenaar I, Nieuwenhuis P, Klasen HJ (1989) Evaporative water loss and epidermis regeneration in partial-thickness wounds dressed with a fluid-retaining vs. a clot-inducing wound covering in guinea pigs. Scand J Plast Reconstr Surg 23: 29–34

    Google Scholar 

  12. Jonkman MF, Bruin P, Pennings AJ, Coenen JMFH, Klasen HJ (1989) Poly(ether urethane) wound covering with high water vapour permeability compared with conventional tulle gras on split-skin donor sites. Burns 15: 211–216

    Google Scholar 

  13. Jürgens C, Wolter D, Kricheldorf HR, Kortmann HR (1991) Entwicklung eines resorbierbaren temporären Hautersatzes für großflächige Verbrennungswunden. Langenbecks Arch Chir [Suppl] 91: 611–616

    Google Scholar 

  14. Jürgens C, Porte T, Wolter D et al. (1995) Entwicklung und Charakterisierung einer absorbierbaren temporären Wundabdeckung. Chirurg 98: 233–240

    Google Scholar 

  15. Jürgens C, Beuchel M, Bisgwa F et al. (1995) In-vitro und in-vivo-Untersuchungen einer absorbierbaren temporären Wundabdeckung. Chirurg 98: 241–247

    Google Scholar 

  16. Lamke LO, Nilsson GE, Reithner HL (1977) The evaporative water loss from burns and the water vapour permeability of grafts and artifical membranes used in the treatment of burns. Burns 3: 159–165

    Google Scholar 

  17. Lorenz C, Meier-Reif K, Back W, Hohl HP, Waag KL (1996) Cultured urothelium in sheep bladder augmentation. Pediatr Surg Int 11: 456–461

    Google Scholar 

  18. May SR (1984) Physiology, immunology and clinical efficacy of an adherent polyurethane wound dressing: Opsite®. In: Wise DL (ed) Burn wound coverings, vol II. Boca Raton, CRC, p 121

  19. Moserova J, Houskova E, Vrtiskova J (1987) Different demand on temporary skin substitutes for different indications. Scand J Plast Reconstr Surg 21: 277

    Google Scholar 

  20. Nangia A, Hung CT (1989) Design of a new hydrocolloid dressing. Burns 15:385–388

    Google Scholar 

  21. Nangia A, Hung CT (1990) Preclinical evaluation of skin substitutes. Burns 16: 358–367

    Google Scholar 

  22. Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(ε-caprolactone), and their copolymers in vivo. Biomaterials 2: 215–220

    Google Scholar 

  23. Pruitt BA, Levine NS (1984) Characteristics and uses of biologic dressings and skin substitutes. Arch Surg 119: 312–322

    Google Scholar 

  24. Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH (1987) The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8: 367–371

    Google Scholar 

  25. Queen D, Evans JH, Gaylor JDS, Courtney JM, Reid WH (1987) Burn wound dressings—a review. Burns 13: 218–228

    Google Scholar 

  26. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery—poly(glycolic)/poly(lactic acid) homo- and copolymers: 2. In vitro degradation. Polymer 22: 494–498

    Google Scholar 

  27. Soehnchen R, Jürgens C, Daniels H, Hilbert E, Orfanos C (1992) Biodegradierbare Polymere als Trägermatrix für kultivierte Keratinozyten. Abstract 15. Jahrestagung der Vereinigung für operative und onkologische Dermatologie 1992; Köln

  28. Sweet DV (ed) (1985–86) Registry of toxic effects of chemical substances. US Department of Health and Human Services, Public Health Service, 1985–86 edn

  29. Tavis MJ, Thornton J, Danet R, Bartlett RH (1978) Current status of skin substitutes. Surg Clin North Am 58: 1233–1248

    Google Scholar 

  30. Vainionpää S, Rokkanen P, Törmälä P (1989) Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci 14: 679–716

    Google Scholar 

  31. Varghese MC, Balin AK, Carter DM, Caldwell D (1986) Local environment of chronic wounds under synthetic dressings. Arch Dermatol 122: 52–57

    Google Scholar 

  32. Winter GD (1964) Movement of epidermal cells over the wound surface. In: Winter GD, Billingham RE (eds), Advances in biology of skin, vol 5. Pergamon, Oxford, p 113

  33. Wise DL, Fellmann TD, Sanderson JE, Wentworth RL (1979) Lactic/glycolic acid polymers.In: Gregoriadis G (ed) Drug carriers in biology and medicine. Academic Press, London, pp 237–270

  34. Wiseman DM, Parm S, Rovee DT, Alvarez OM (1992) Wound dressings: Design and use. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing. Saunders, Philadelphia, pp 563–577

  35. Wolf D, Capozzi A, Pennisi V (1980) Evaluation of biological dressings. Ann Plast Surg 5: 186–190

    Google Scholar 

  36. Wood M, Hale HW (1972) The use of pigskin in the treatment of thermal burns. Am J Surg 124: 1537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porté, T., Faschingbauer, M., Seide, K. et al. Topkin®—Eine resorbierbare Folie aus Lactid-Caprolacton. Trauma Berufskrankh 5, 443–448 (2003). https://doi.org/10.1007/s10039-003-0811-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-003-0811-3

Schlüsselwörter

Keywords

Navigation