Skip to main content
Log in

Explicit total Lagrangian material point method with implicit frictional-contact model for soft granular materials

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We introduce a novel numerical method for the simulation of soft granular materials, in which the particles can undergo large strains under load without rupture. The proposed approach combines an explicit total Lagrangian formulation of Material Point Method (TLMPM) with the Contact Dynamics (CD) method. The TLMPM resolves particle bulk deformations whereas the CD treats contact interactions between soft particles. The efficiency and accuracy of this approach are illustrated by analyzing diametral compression of a soft circular particle and the compaction of an assembly of soft particles up to very high levels of packing fraction. We show that although the assembly undergoes a jamming transition, the particles continue to rearrange as they get increasingly distorted under load. Interestingly, as the packing fraction increases, a transition occurs to a regime fully governed by particle shape change. The evolution of the global stress as well as the connectivity of the particles as a function of the packing fraction are discussed and a predictive model relating stress to packing fraction beyond jamming transition is proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sinka, I.C.: Modelling powder compaction. KONA Powder Part. J. 25, 4–22 (2007)

    Article  Google Scholar 

  2. Baroutaji, A., Bryan, K., Sajjia, M., Lenihan, S.: Mechanics and computational modelling of pharmaceutical tabletting process. In: Reference Module in Materials Science and Materials Engineering, 1–10 (2017)

  3. Samimi, A., Hassanpour, A., Ghadiri, M.: Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chem. Eng. Sci. 60, 3993–4004 (2005)

    Article  Google Scholar 

  4. Hart, A.: Effect of particle size on detergent powders flowability and tabletability. J. Chem. Eng. Process Technol. 6, 215–218 (2015)

    Google Scholar 

  5. Uffelen, P.V., Konings, R.J.M., Vitanza, C., Tulenko, J.: Analysis of reactor fuel rod behavior. In: Handbook of Nuclear Engineering. Springer, Boston (2010)

  6. Cloitre, M., Borrega, R., Monti, F., Leibler, L.: Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90, 068303 (2003)

    Article  ADS  Google Scholar 

  7. Bonnecaze, R.T., Cloitre, M.: Micromechanics of soft particle glasses. Adv. Polym. Sci. 236, 117–161 (2010)

    Article  Google Scholar 

  8. Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condensed Matter 22, 033101 (2010)

    Article  ADS  Google Scholar 

  9. Boromand, A., Signoriello, A., Lowensohn, J., Orellana, C.S., Weeks, E.R., Ye, F., Shattuck, M.D., O’Hern, C.S.: The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. Soft Matter 15, 5854–5865 (2019)

    Article  ADS  Google Scholar 

  10. Wang, D., Treado, J.D., Boromand, A., Norwick, B., Murrell, M.P., Shattuck, M.D., O’Hern, C.S.: The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions. Soft Matter 17, 9901–9915 (2021)

    Article  ADS  Google Scholar 

  11. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  12. Jean, M.: The non smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Radjai, F., Dubois, F.: Discrete Numerical Modeling of Granular Materials. Wiley-ISTE, New-York (2011)

    Google Scholar 

  14. Nezamabadi, S., Nguyen, T.H., Delenne, J.-Y., Radjai, F.: Modeling soft granular materials. Granular Matter 19, 8 (2017)

    Article  Google Scholar 

  15. Clemmer, J.T., Monti, J.M., Lechman, J.B.: A soft departure from jamming: the compaction of deformable granular matter under high pressures. Soft Matter 20, 1702–1718 (2024)

    Article  Google Scholar 

  16. Munjiza, A.A.: The Combined Finite-Discrete Element Method. Wiley, Chichester (2004)

    Book  Google Scholar 

  17. Nezamabadi, S., Radjai, F., Averseng, J., Delenne, J.-Y.: Implicit frictional-contact model for soft particle systems. J. Mech. Phys. Solids 83, 72–87 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Moghaddam, M., Darvizeh, R., Davey, K., Darvizeh, A.: Scaling of the powder compaction process. Int. J. Solids Struct. 144, 192–212 (2018)

    Article  Google Scholar 

  19. Nezamabadi, S., Frank, X., Delenne, J.-Y., Averseng, J., Radjai, F.: Parallel implicit contact algorithm for soft particle systems. Comput. Phys. Commun. 237, 17–25 (2019)

    Article  ADS  Google Scholar 

  20. Cantor, D., Cárdenas-Barrantes, M., Preechawuttipong, I., Renouf, M., Azéma, E.: Compaction model for highly deformable particle assemblies. Phys. Rev. Lett. 124, 208003 (2020)

    Article  ADS  Google Scholar 

  21. Cárdenas-Barrantes, M., Cantor, D., Barés, J., Renouf, M., Azéma, E.: Compaction of mixtures of rigid and highly deformable particles: a micromechanical model. Phys. Rev. E 102, 032904 (2020)

    Article  ADS  Google Scholar 

  22. Vu, T.-L., Nezamabadi, S., Mora, S.: Compaction of elastic granular materials: inter-particles friction effects and plastic events. Soft Matter 16, 679–687 (2020)

    Article  ADS  Google Scholar 

  23. Vu, T.-L., Nezamabadi, S., Mora, S.: Effects of particle compressibility on structural and mechanical properties of compressed soft granular materials. J. Mech. Phys. Solids 146, 104201 (2021)

    Article  Google Scholar 

  24. Benson, D.J.: An implicit multi-material Eulerian formulation. Int. J. Numer. Methods Eng. 48, 475–499 (2000)

    Article  MathSciNet  Google Scholar 

  25. Li, W.-Y., Yin, S., Wang, X.-F.: Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the sph method. Appl. Surface Sci. 256, 3725–3734 (2010)

    Article  ADS  Google Scholar 

  26. Carbonell, J.M., Oñate, E., Suŕez, B.: Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput. Mech. 52, 607–629 (2013)

    Article  Google Scholar 

  27. Mollon, G.: A multibody meshfree strategy for the simulation of highly deformable granular materials. Int. J. Numer. Methods Eng. 108, 1477–1497 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mollon, G.: The soft discrete element method. Granular Matter 24, 11 (2022)

    Article  Google Scholar 

  29. Cheng, Y., Treado, J.D., Lonial, B.F., Habdas, P., Weeks, E.R., Shattuck, M.D., O’Hern, C.S.: Hopper flows of deformable particles. Soft Matter 18, 8071–8086 (2022)

    Article  ADS  Google Scholar 

  30. Nezamabadi, S., Ghadiri, M., Delenne, J.-Y., Radjai, F.: Modelling the compaction of plastic particle packings. Comput. Part. Mech. 9, 45–52 (2022)

    Article  Google Scholar 

  31. Moreau, J.J.: Evolution problem associated with a moving convex set in a hilbert space. J. Differ. Equ. 26, 347–374 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  32. Jean, M.: Unilateral contact and dry friction: time and space variables discretization. Arch. Mech. Warszawa 40, 677–691 (1988)

    Google Scholar 

  33. Radjai, F., Richefeu, V.: Bond anisotropy and cohesion of wet granular materials. Philos. Trans. R. Soc. A 367, 5123–5138 (2009)

    Article  ADS  Google Scholar 

  34. Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., Brackbill, J.U., Witzel, W.M., Foster, J.C.: An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput. Model. Eng. Sci. 22, 509–522 (2001)

    Google Scholar 

  35. Guilkey, J.E., Weiss, J.A.: Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element method. Int. J. Numer. Methods Eng. 57, 1323–1338 (2003)

    Article  Google Scholar 

  36. Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193, 4417–4438 (2004)

    Article  ADS  Google Scholar 

  37. Guo, Y.J., Narin, J.A.: Three-dimensional dynamic fracture analysis using the material point method. Comput. Model. Eng. Sci. 16, 141–156 (2006)

    Google Scholar 

  38. Pan, X.F., Xu, A.G., Zhang, G.C., Zhang, P., Zhu, J.S., Ma, S., Zhang, X.: Three-dimensional multi-mesh material point method for solving collision problems. Commun. Theor. Phys. 49, 1129–1138 (2008)

    Article  ADS  Google Scholar 

  39. Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85, 498–517 (2011)

    Article  Google Scholar 

  40. Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J.Y.: Material point method after 25 years: theory, implementation, and applications. Adv. Appl. Mech. 53, 185–398 (2020)

    Article  Google Scholar 

  41. Vaucorbeil, A., Nguyen, V.P.: Modelling contacts with a total lagrangian material point method. Comput. Methods Appl. Mech. Eng. 373, 113503 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  42. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals vol. 1. Butterworth-heinemann (2005)

  43. Jean, M.: Frictional contact in rigid or deformable bodies: numerical simulation of geomaterials. In: Salvadurai, A.P.S., Boulon, J.M. (eds.) Elsevier Science Publisher, Amsterdam, pp. 463–486 (1995)

  44. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  Google Scholar 

  45. Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Compos. Struct. 88, 506 (2010)

    Article  Google Scholar 

  46. Johnson, K.L.: Contact Mechanics. University Press, Cambridge (1999)

    Google Scholar 

  47. Roberts, A.P., Teubner, M.: Transport properties of heterogeneous materials derived from gaussian random fields: bounds and simulation. Phys. Rev. E 51, 4141 (1995)

    Article  ADS  Google Scholar 

  48. Gatta, J.-M., Moneriea, Y., Lauxa, D., Baronb, D.: Elastic behavior of porous ceramics: application to nuclear fuel materials. J. Nucl. Mater. 336, 145–155 (2005)

    Article  ADS  Google Scholar 

  49. Affes, R., Delenne, J.-Y., Monerie, Y., Radjaï, F., Topin, V.: Tensile strength and fracture of cemented granular aggregates. Eur. Phys. J. E 35, 117 (2012)

    Article  Google Scholar 

  50. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. J. Phys. D Appl. Phys. 2, 863 (1969)

    Article  ADS  Google Scholar 

  51. Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160 (2000)

    Article  ADS  Google Scholar 

  52. O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phy. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  53. Zhang, J., Majmudar, T.S., Sperl, M., Behringer, R.P.: Jamming for a 2D granular material. Soft Matter 6, 2982–2991 (2010)

    Article  ADS  Google Scholar 

  54. Vu, T.-L., Barés, J., Mora, S., Nezamabadi, S.: Numerical simulations of the compaction of assemblies of rubberlike particles: a quantitative comparison with experiments. Phys. Rev. E 99, 062903 (2019)

    Article  ADS  Google Scholar 

  55. Cárdenas-Barrantes, M., Cantor, D., Barés, J., Renouf, M., Azéma, E.: Three-dimensional compaction of soft granular packings. Soft Matter 18, 312–321 (2022)

    Article  ADS  Google Scholar 

  56. Barés, J., Cárdenas-Barrantes, M., Pinzón, G., Andò, E., Renouf, M., Viggiani, G., Azéma, E.: Compacting an assembly of soft balls far beyond the jammed state: insights from three-dimensional imaging. Phys. Rev. E 108, 044901 (2023)

    Article  ADS  Google Scholar 

  57. Kováčik, J.: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 8, 1007–1010 (1999)

    Article  Google Scholar 

  58. Kováčik, J.: Correlation between shear modulus and porosity in porous materials. J. Mater. Sci. Lett. 20, 1953–1955 (2001)

    Article  Google Scholar 

  59. Boudina, I., Rondet, E., Nezamabadi, S., Sharkawi, T.: Insight into tableted pellets by combining x-ray micro-computed tomography and experimental compaction. Powder Technol. 397, 117083 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE08-0011 (PaMaCo project). We are also grateful to the Genotoul Bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul, https://doi.org/10.15454/1.5572369328961167E12) for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Nezamabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezamabadi, S., Radjai, F. Explicit total Lagrangian material point method with implicit frictional-contact model for soft granular materials. Granular Matter 26, 67 (2024). https://doi.org/10.1007/s10035-024-01438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01438-y

Keywords

Navigation