Skip to main content
Log in

Study on modified pre-disintegrated carbonaceous mudstone triaxial test and binary medium model

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In order to eliminate the undesirable characteristics of carbonaceous mudstone roadbed fillers, cement and fly ash are used to modify the pre-disintegrated carbonaceous mudstone, and the stress–strain relationship of pre-disintegrated carbonaceous mudstone before and after modification are analyzed by a series of conventional unconsolidated undrained triaxial compression tests at different confining pressures and different ages. Based on the microscopic modification mechanism of carbonaceous mudstone and the concept of binary medium model, the products from hydration reaction of pre-disintegrated carbonaceous mudstone, cement, and fly ash are regarded as bonded elements, and the pre-disintegrated carbonaceous mudstones without hydration reaction are regarded as frictional elements, and the binary medium model of modified pre-disintegrated carbonaceous mudstone is established. The results show that the stress–strain curve of pre-disintegrated carbonaceous mudstone is strain-hardening type, and the stress–strain of pre-disintegrated carbonaceous mudstone modified by fly ash and cement is strain-softening type, and the mechanical properties of modified pre-disintegrated carbonaceous mudstone are significantly improved. The deformation and damage mechanism of modified carbonaceous mudstone is investigated by applying the concept of binary medium model from a mesoscopic perspective, and the stress-bearing mechanism of bonded elements and frictional elements in external loading and stressing processes are analyzed. Finally, the measured data reveals that the binary medium model can simulate both the stress–strain softening characteristics of modified pre-disintegrated carbonaceous mudstone and the stress–strain hardening characteristics of organic material-modified expansive soils reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14

Similar content being viewed by others

References

  1. Yu, M., Liu, B., Liu, K., et al.: Creep behavior of carbonaceous mudstone under triaxial hydraulic coupling condition and constitutive modelling[J]. Int. J. Rock Mech. Min. Sci. 164, 105357 (2023). https://doi.org/10.1016/j.ijrmms.2023.105357

    Article  Google Scholar 

  2. Fu, H., Zha, H.Y., Zeng, L., et al.: Disintegration behavior and mechanism of carbonaceous mudstone under acidic corrosion and wetting-drying cycles[J]. Bull. Eng. Geol. Environ. 82(5), 168 (2023). https://doi.org/10.1007/s10064-023-03192-6

    Article  Google Scholar 

  3. Zhang, Z., Han, L., Wei, S., et al.: Disintegration law of strongly weathered purple mudstone on the surface of the drawdown area under conditions of Three Gorges Reservoir operation[J]. Eng. Geol. 270, 105584 (2020). https://doi.org/10.1016/j.enggeo.2020.105584

    Article  Google Scholar 

  4. Herz-Thyhsen, R.J., Kaszuba, J.P., Dewey, J.C.: Mineral dissolution and precipitation induced by hydraulic fracturing of a mudstone and a tight sandstone in the Powder River Basin, Wyoming, USA[J]. Appl. Geochem. 119, 104636 (2020). https://doi.org/10.1016/j.apgeochem.2020.104636

    Article  Google Scholar 

  5. Yang, Y.L., Zhang, T., Liu, S.Y., et al.: Mechanical properties and deterioration mechanism of remolded carbonaceous mudstone exposed to wetting-drying cycles[J]. Rock Mech. Rock Eng. 55(6), 3769–3780 (2022). https://doi.org/10.1007/s00603-022-02833-8

    Article  ADS  Google Scholar 

  6. Wang, Y., Wang, W., Zhao, Y., et al.: Modification effect of nano-clay on mechanical behavior of composite geomaterials: cement, nano-silica and coastal soft soil[J]. Materials 15(24), 8735 (2022). https://doi.org/10.3390/ma15248735

    Article  ADS  Google Scholar 

  7. Okonta, F.: Pavement geotechnical properties of polymer modified weathered semi-arid shale subgrade[J]. Int. J. Pavement Res. Technol. 12, 54–63 (2019). https://doi.org/10.1007/s42947-019-0007-2

    Article  Google Scholar 

  8. Wang, H., Yang, J., Zha, H., et al.: The use of artemisia sphaerocephala Krasch. gum as an eco-friendly stabilizer to improve the mechanical properties of disintegrated carbonaceous mudstone[J]. Construct. Build. Mater. 316, 125833 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125833

  9. Chen, C., Fu, H., Gao, Q.F., et al.: Polyurea reinforcement of disintegrated mudstone embankments and the underlying mechanism[J]. Transp. Geotech. 37, 100874 (2022). https://doi.org/10.1016/j.trgeo.2022.100874

  10. Chai, Z., Kang, T., Chen, W.: Effects of organic silicone additive material on physical and mechanical properties of mudstone[J]. Geomech. Eng. 6(2), 139–151 (2014). https://doi.org/10.12989/gae.2014.6.2.139

  11. Fu, H., Zha, H., Pan, H., et al.: Experimental study on water stability and scouring of pre-disintegrated carbonaceous mudstone modified by biopolymers[J]. J. Cent. S. Univ. (Natural Science Edition) 53(07), 2633–2644 (2022)

    Google Scholar 

  12. Ma, X., Zhou, L., Ma, H., et al.: Research on the improvement technology of roadbed filled with strongly weathered kilometres of rock[J]. China Highway J. Transp. 25(02), 20–26 (2012)

    Google Scholar 

  13. Zeng, L., Yu, H., Gao, Q., et al.: Mechanical behaviour and micro-mechanism study of modified pre-disintegrated carbonaceous mudstone (in English)[J]. J. Cent. S. Univ. 27(07), 1992–2002 (2020)

    Article  Google Scholar 

  14. Yang, J., Wang, L., Li, X., et al.: Double modification for mudstone roadbed of open pit mines[J]. Chin. J. Geotech. Eng. 37(08), 1469–1477 (2015). https://doi.org/10.11779/CJGE201508016

    Article  ADS  Google Scholar 

  15. Shen, Z., Liu, E., Chen, T.: Generalized stress-strain relationship of binary medium model for geotechnical materials [J]. Chin. J. Geotech. Eng. 05, 489–494 (2005)

    Google Scholar 

  16. Yu, D., Liu, E., Xiang, B., et al.: A micro–macro constitutive model for rock considering breakage effects[J]. Int. J. Min. Sci. Technol. 33(2), 173–184 (2023). https://doi.org/10.1016/j.ijmst.2022.09.027

    Article  Google Scholar 

  17. He, Yy., Chen, C., Wang, Fm. et al.: Constitutive model for Ya’an mudstone based on mesoscopic breakage mechanism. J. Mt. Sci. 20, 1159–1169 (2023). https://doi.org/10.1007/s11629-022-7630-0

  18. Yu, D., Liu, E., Sun, P., et al.: Dynamic mechanical properties and constitutive model for jointed mudstone samples subjected to cyclic loading[J]. Eur. J. Environ. Civ. Eng. 26(14), 7240–7266 (2022). https://doi.org/10.1080/19648189.2021.1984313

    Article  Google Scholar 

  19. Zhou, Z., Ding, H.-H., Gao, W.-Y.: Theoretical model of binary medium for soil-rock mixture considering influence of particle crushing[J]. J. Southeast Univ. (Natural Science Edition). (In Chinese) https://doi.org/10.3969/j.issn.1001-0505.2021.04.007

  20. Wu, M., Du, B., Yao, Y., et al.: An experimental study on stress-strain behavior and constitutive model of hardfill material. Sci. China Phys. Mech. Astron. 54, 2015 (2011). https://doi.org/10.1007/s11433-011-4518-3

    Article  ADS  Google Scholar 

  21. Fan, W., Deng, L., Yuan, W.: Double parameter binary-medium model of fissured loess[J]. Eng. Geol. 236, 22–28 (2018). https://doi.org/10.1016/j.enggeo.2017.09.014

    Article  Google Scholar 

  22. Zhang, Y., Chen, C., Gao, S., et al.: A novel binary-medium breakage model for loess in an acidic aqueous environment. Bull. Eng. Geol. Environ. 82, 210 (2023). https://doi.org/10.1007/s10064-023-03227-y

    Article  Google Scholar 

  23. Zhang, D., Liu, E., Huang, J.: Elastoplastic constitutive model for frozen sands based on framework of homogenization theory. Acta Geotech. 15, 1831–1845 (2020). https://doi.org/10.1007/s11440-019-00897-5

    Article  Google Scholar 

  24. Zhang, D., Liu, E., Yu, D.: A micromechanics-based elastoplastic constitutive model for frozen sands based on homogenization theory[J]. Int. J. Damage Mech. 29(5), 689–714 (2020) .https://doi.org/10.1177/1056789519891519

  25. Institute of Highway Science, Ministry of Transport: JTG 3430–2020 Highway geotechnical test specification [S]. People's Transportation Publication, Beijing (2020)

  26. CCCC Second Highway Survey and Design Research Institute Co.: JIG D30–2015 highway roadbed design specification [S]. People's Traffic Press, Beijing (2015)

  27. Ye, H., Chu, C., Xu, L. et al.: Experimental studies on drying-wetting cycle characteristics of expansive soils improved by industrial wastes[J]. Adv. Civ. Eng. 2018 (2018). https://doi.org/10.1155/2018/2321361

  28. Phetchuay, C., Horpibulsuk, S., Arulrajah, A., et al.: Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Appl. Clay Sci. 127, 134–142 (2016). https://doi.org/10.1016/j.clay.2016.04.005

    Article  Google Scholar 

  29. Phummiphan, I., Horpibulsuk, S., Phoo-ngernkham, T., et al.: Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material[J]. J. Mater. Civ. Eng. 29(2), 04016195 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001708

    Article  Google Scholar 

  30. Shinawi, A.E.: Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt [J]. J. Afr. Earth Sc. 130, 195–201 (2017). https://doi.org/10.1016/j.jafrearsci.2017.03.020

    Article  Google Scholar 

  31. Yang, S., Gong, X., Huang, W., et al.: Resilient modulus of unsaturated cohesive subgrade soils [J]. Chin. J. Geotech. Eng. (02), 225–229 (2006)

  32. Uzan, J.: Characterization of clayey subgrade materials for mechanistic design of flexible pavements[J]. Transp. Res. Rec. 1629(1), 189–196 (1998). https://doi.org/10.3141/1629-21

    Article  Google Scholar 

  33. Wang, Z., Luo, Y., Luo, W., et al.: Mechanical characterisation and parameter identification of rheological deformation of subgrade compacted soil[J]. Chin. J. Rock Mech. Eng. 30(01), 208–216 (2011)

    Google Scholar 

  34. Luo, J.H., Mi, D.C., Ye, Q.Y., Sun, G.H., Chen, D.Q.: Study on microscopic characteristics and physical and mechanical parameters of carbonaceous rocks. MSF 980, 368–376 (2020). https://doi.org/10.4028/www.scientific.net/msf.980.368

    Article  Google Scholar 

  35. Zeng, L., Luo, J.T., Liu, J., et al.: Disintegration characteristics and mechanisms of carbonaceous mudstone subjected to load and cyclic drying–wetting[J]. J. Mater. Civ. Eng. 33(8), 04021195 (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003817

    Article  Google Scholar 

  36. Ioannidou, K., Kanduč, M., Li, L., et al.: The crucial effect of early-stage gelation on the mechanical properties of cement hydrates. Nat. Commun. 7, 12106 (2016). https://doi.org/10.1038/ncomms12106

    Article  ADS  Google Scholar 

  37. Ding, J., Ma, S., Zheng, S. et al.: Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process[J]. Hydrometallurgy 161, 58–64 (2016). https://doi.org/10.1016/j.hydromet.2016.01.025

  38. Ahmari, S., Ren, X., Toufigh, V., et al.: Production of geopolymeric binder from blended waste concrete powder and fly ash[J]. Constr. Build. Mater. 35, 718–729 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.044

    Article  Google Scholar 

  39. Wu, M., Du, B., Yao, Y. et al.: Triaxial tests and a new constitutive model of hardfill material [J]. Rock Soil Mech. 32(08), 2241–2250 (2011). https://doi.org/10.16285/j.rsm.2011.08.031

  40. Duncan, J.M., Chang, C.Y.: Nonlinear analysis of stress and strain in soils[J]. J. Soil Mech. Found. Div. 96(5), 1629–1653 (1970). https://doi.org/10.1061/JSFEAQ.0001458

    Article  Google Scholar 

  41. Kewei, F.A.N., Jun, Y.A.N., Lingjie, L.I.U., et al.: Study on the strength characteristics and microstructure of expansive soils treated with lignin fibre in seasonal frozen area[J]. J. Cent. S. Univ (Natural Science Edition) 53(01), 326–334 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52708066, 52708067, 52378440). Youth Scientific and Technological Innovation Talents of Hunan Province (2020RC306); Outstanding Innovative Youth Training Program of Changsha City (kq2305023); Natural Science Foundation of Hunan Province (2021JJ40576, 2023JJ10045). the Postgraduate -Scientific Research Innovation Project of Hunan Province (CX20230873)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zeng.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Hy., Yang, Ht., Wu, H. et al. Study on modified pre-disintegrated carbonaceous mudstone triaxial test and binary medium model. Granular Matter 26, 61 (2024). https://doi.org/10.1007/s10035-024-01435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01435-1

Keywords

Navigation