Skip to main content
Log in

A new numerical method for constructing the three-dimensional microstructure of S-RM using digital image processing technology

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Soil-rock mixture (S-RM) is widely distributed in some accumulation slopes and commonly used as a backfill material in the field of geotechnical engineering. The mechanical properties of S-RM play a pivotal role in ensuring the stability of geotechnical engineering projects. The discrete element method (DEM), which can construct S-RM’s microstructure model, is an effective tool for studying its mechanical properties. Currently, the most realistic and precise approach for constructing a three-dimensional (3D) microstructure model of S-RM is digital image processing (DIP) technology using computed tomography (CT) scanning device or 3D laser scanning device. However, these devices are very expensive. This study aims to develop an economical and accurate DEM for constructing the 3D microstructure of S-RM using DIP technology with a conventional digital camera. Firstly, a digital camera was used to capture three sets of 2D images on real rock blocks around four circles at different angles. DIP technology was then applied to process the 2D images and construct the refined 3D rock block grid models. Subsequently, the geometric parameters of the grid models were compared with those of the corresponding real rock blocks to validate the accuracy and applicability of this method. The microstructure model of S-RM in the large-scale direct shear test was then established and verified for DEM simulations. Finally, the mechanical properties of S-RM were analyzed based on the evolution of the shear band, the rotation of rock blocks, and the change of contact force chain.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Xu, W.J., Yue, Z.Q., Hu, R.L.: Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method. Int. J. Rock Mech. Min. Sci. 45, 749–762 (2008). https://doi.org/10.1016/j.ijrmms.2007.09.003

    Article  Google Scholar 

  2. Xu, W.J., Hu, R.L., Tan, R.J.: Some geomechanical properties of soil-rock mixtures in the Hutiao Gorge area China. Geotechnique 57, 255–264 (2007). https://doi.org/10.1680/geot.2007.57.3.255

    Article  Google Scholar 

  3. Yang, Y., Sun, Y., Sun, G., Zheng, H.: Sequential excavation analysis of soil-rock-mixture slopes using an improved numerical manifold method with multiple layers of mathematical cover systems. Eng. Geol. 261, 105278 (2019). https://doi.org/10.1016/j.enggeo.2019.105278

    Article  Google Scholar 

  4. Nichol, D.: Landslides and landslide management in south wales. Q. J. Eng. Geol. Hydrogeol. 34, 415–416 (2001). https://doi.org/10.1144/qjegh.34.4.415-a

    Article  Google Scholar 

  5. Gao, W., Hu, R., Oyediran, I.A., Li, Z., Zhang, X.: Geomechanical characterization of Zhangmu soil-rock mixture deposit. Geotech. Geol. Eng. 32, 1329–1338 (2014). https://doi.org/10.1007/s10706-014-9808-x

    Article  Google Scholar 

  6. Xu, W.J., Hu, R.L., Yue, Z.Q., Tan, R.J.: Genesis and stability of the zhoujiawan landslide, three gorges China. Bull. Eng. Geol. Environ. 68, 47–54 (2009). https://doi.org/10.1007/s10064-008-0154-1

    Article  Google Scholar 

  7. Gao, W., Iqbal, J., Hu, R.: Investigation of geomechanical characterization and size effect of soil-rock mixture: a case study. Bull. Eng. Geol. Environ. 80, 6263–6274 (2021). https://doi.org/10.1007/s10064-021-02289-0

    Article  Google Scholar 

  8. Coli, N., Berry, P., Boldini, D.: In situ non-conventional shear tests for the mechanical characterisation of a bimrock. Int. J. Rock Mech. Min. Sci. 48, 95–102 (2011). https://doi.org/10.1016/j.ijrmms.2010.09.012

    Article  Google Scholar 

  9. Zhang, Z.L., Xu, W.J., Xia, W., Zhang, H.Y.: Large-scale in-situ test for mechanical characterization of soil–rock mixture used in an embankment dam. Int. J. Rock Mech. Min. Sci. 86, 317–322 (2016). https://doi.org/10.1016/j.ijrmms.2015.04.001

    Article  Google Scholar 

  10. Liu, L., Mao, X., Xiao, Y., Wu, Q., Tang, K., Liu, F.: Effect of rock particle content on the mechanical behavior of a soil-rock mixture (SRM) via large-scale direct shear test. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/6452657

    Article  Google Scholar 

  11. Qian, J., Yao, Y., Li, J., Xiao, H., Luo, S.: Resilient properties of soil-rock mixture materials: preliminary investigation of the effect of composition and structure. Materials (Basel). 13, 1658 (2020). https://doi.org/10.3390/ma13071658

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Cen, D., Huang, D., Ren, F.: Shear deformation and strength of the interphase between the soil–rock mixture and the benched bedrock slope surface. Acta Geotech. 12, 391–413 (2017). https://doi.org/10.1007/s11440-016-0468-2

    Article  Google Scholar 

  13. Xu, W.J., Wang, S., Zhang, H.Y., Zhang, Z.L.: Discrete element modelling of a soil-rock mixture used in an embankment dam. Int. J. Rock Mech. Min. Sci. 86, 141–156 (2016). https://doi.org/10.1016/j.ijrmms.2016.04.004

    Article  Google Scholar 

  14. Shi, C., Bai, J.: Compositional effects and mechanical parametric analysis of outwash deposits based on the randomised generation of stone blocks. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/863915

    Article  Google Scholar 

  15. Xu, W.J., Hu, L.M., Gao, W.: Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam. Int. J. Rock Mech. Min. Sci. 86, 166–178 (2016). https://doi.org/10.1016/j.ijrmms.2016.04.007

    Article  Google Scholar 

  16. Zhang, Z., Cui, Y., Chan, D.H., Taslagyan, K.A.: DEM simulation of shear vibrational fluidization of granular material. Granul. Matter 20, 1–20 (2018). https://doi.org/10.1007/s10035-018-0844-8

    Article  Google Scholar 

  17. Zhou, X.H., Zhou, Y.G., Chen, Y.M.: DEM analysis of undrained cyclic behavior and resistance of saturated dense sand without stress reversals. Granul. Matter 25, 1–14 (2023). https://doi.org/10.1007/s10035-023-01328-9

    Article  Google Scholar 

  18. Xu, W.J., Qiang, X., Hu, R.L.: Study on the shear strength of soil-rock mixture by large scale direct shear test. Int. J. Rock Mech. Min. Sci. 48, 1235–1247 (2011). https://doi.org/10.1016/j.ijrmms.2011.09.018

    Article  Google Scholar 

  19. Xu, W.J., Zhang, H.Y.: Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture. Bull. Eng. Geol. Environ. 80, 2715–2726 (2021). https://doi.org/10.1007/s10064-020-02050-z

    Article  Google Scholar 

  20. Gong, J., Liu, J.: Analysis on the mechanical behaviors of soil-rock mixtures using discrete element method. Procedia Eng. 102, 1783–1792 (2015). https://doi.org/10.1016/j.proeng.2015.01.315

    Article  Google Scholar 

  21. Zhao, Y., Liu, Z.: Numerical experiments on triaxial compression strength of soil-rock mixture. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/8763569

    Article  Google Scholar 

  22. Zhang, H., Hu, X., Boldini, D., He, C., Liu, C., Ai, C.: Evaluation of the shear strength parameters of a compacted S-RM fill using improved 2-D and 3-D limit equilibrium methods. Eng. Geol. 269, 105550 (2020). https://doi.org/10.1016/j.enggeo.2020.105550

    Article  Google Scholar 

  23. Sonmez, H., Ercanoglu, M., Kalender, A., Dagdelenler, G., Tunusluoglu, C.: Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension. Int. J. Rock Mech. Min. Sci. 86, 91–103 (2016). https://doi.org/10.1016/j.ijrmms.2016.03.022

    Article  Google Scholar 

  24. Wang, S., Li, Y., Gao, X., Xue, Q., Zhang, P., Wu, Z.: Influence of volumetric block proportion on mechanical properties of virtual soil-rock mixtures. Eng. Geol. 278, 105850 (2020). https://doi.org/10.1016/j.enggeo.2020.105850

    Article  Google Scholar 

  25. Shan, P., Lai, X.: Mesoscopic structure PFC∼2D model of soil rock mixture based on digital image. J. Vis. Commun. Image Represent. 58, 407–415 (2019). https://doi.org/10.1016/j.jvcir.2018.12.015

    Article  Google Scholar 

  26. Ji, X., Han, B., Hu, J., Li, S., Xiong, Y., Sun, E.: Application of the discrete element method and CT scanning to investigate the compaction characteristics of the soil–rock mixture in the subgrade. Road Mater. Pavement Des. 23, 397–413 (2022). https://doi.org/10.1080/14680629.2020.1826350

    Article  CAS  Google Scholar 

  27. Ji, X., Li, J., Cui, Z., Li, S., Xiong, Y., Hu, J., Jiang, Y.: A prediction method for the California bearing ratio of soil-rock mixture based on the discrete element method and CT scanning. Adv. Civ. Eng. 2020, 1–12 (2020). https://doi.org/10.1155/2020/9794756

    Article  Google Scholar 

  28. Hu, X., Zhang, H., Boldini, D., Liu, C., He, C., Wu, S.: 3D modelling of soil-rock mixtures considering the morphology and fracture characteristics of breakable blocks. Comput. Geotech. 132, 103985 (2021). https://doi.org/10.1016/j.compgeo.2020.103985

    Article  Google Scholar 

  29. Zhou, Y., Wang, H., Zhou, B., Li, J.: DEM-aided direct shear testing of granular sands incorporating realistic particle shape. Granul. Matter. 20, 1–12 (2018). https://doi.org/10.1007/s10035-018-0828-8

    Article  Google Scholar 

  30. Ding, X., Zhang, L., Zhu, H., Zhang, Q.: Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech. Rock Eng. 47, 2139–2156 (2014). https://doi.org/10.1007/s00603-013-0533-1

    Article  ADS  Google Scholar 

  31. Meng, Q., Wang, H., Cai, M., Xu, W., Zhuang, X., Rabczuk, T.: Three-dimensional mesoscale computational modeling of soil-rock mixtures with concave particles. Eng. Geol. 277, 105802 (2020). https://doi.org/10.1016/j.enggeo.2020.105802

    Article  Google Scholar 

  32. Zhang, H., Boldini, D., Wang, L., Deng, H., Liu, C.: Influence of block form on the shear behaviour of soft soil-rock mixtures by 3D block modelling approaches. Rock Mech. Rock Eng. 55, 3279–3300 (2022). https://doi.org/10.1007/s00603-022-02795-x

    Article  ADS  Google Scholar 

  33. Yu, J., Jia, C., Xu, W., Zhang, Q., Wu, C.J.: Granular discrete element simulation of the evolution characteristics of the shear band in soil–rock mixture based on particle rotation analysis. Environ. Earth Sci. 80, 1–14 (2021). https://doi.org/10.1007/s12665-021-09484-y

    Article  ADS  Google Scholar 

  34. Lin, Y.P., Wang, C.T., Dai, K.R.: Reverse engineering in CAD model reconstruction of customized artificial joint. Med. Eng. Phys. 27, 189–193 (2005). https://doi.org/10.1016/j.medengphy.2004.09.006

    Article  PubMed  Google Scholar 

  35. Nguyen, C.V., Lovell, D.R., Adcock, M., La Salle, J.: Capturing natural-colour 3D models of insects for species discovery and diagnostics. PLoS ONE 9, 1–11 (2014). https://doi.org/10.1371/journal.pone.0094346

    Article  CAS  Google Scholar 

  36. Chen, L.C., Lin, G.C.I.: Reverse engineering in the design of turbine blades–a case study in applying the MAMDP. Robot. Comput. Integr. Manuf. 16, 161–167 (2000). https://doi.org/10.1016/S0736-5845(99)00044-7

    Article  CAS  Google Scholar 

  37. Liu, C., Zhang, H., Hu, X., Wu, S., He, X., Xia, P.: A novel stochastic generation method of shale blocks in S-RM considering the particle size effect of morphological features. Bull. Eng. Geol. Environ. 82, 1–14 (2023). https://doi.org/10.1007/s10064-022-03032-z

    Article  Google Scholar 

  38. Zheng, J., Hryciw, R.D.: A corner preserving algorithm for realistic DEM soil particle generation. Granul. Matter. 18, 84 (2016). https://doi.org/10.1007/s10035-016-0679-0

    Article  Google Scholar 

  39. Zhao, L., Zhang, S., Huang, D., Wang, X.: A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Constr. Build. Mater. 247, 117906 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117906

    Article  Google Scholar 

  40. Huang, H., Tutumluer, E.: Image-aided element shape generation method in discrete-element modeling for railroad ballast. J. Mater. Civ. Eng. 26, 527–535 (2014). https://doi.org/10.1061/(asce)mt.1943-5533.0000839

    Article  Google Scholar 

  41. Li, L., Wang, J., Yang, S., Klein, B.: A voxel-based clump generation method used for DEM simulations. Granul. Matter 24, 1–19 (2022). https://doi.org/10.1007/s10035-022-01251-5

    Article  Google Scholar 

  42. ASTM D3080/D3080M-11: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained. ASTM International, West Conshohocken (2011)

    Google Scholar 

  43. Anwer, N., Mathieu, L.: From reverse engineering to shape engineering in mechanical design. CIRP Ann. Manuf. Technol. 65, 165–168 (2016). https://doi.org/10.1016/j.cirp.2016.04.052

    Article  Google Scholar 

  44. Pappas, G., Vidakis, N., Petousis, M., Maniadi, A.: Individualized ophthalmic exoplants by means of reverse engineering and 3D printing technologies for treating high myopia complications with macular buckles. Biomimetics 5, 1–10 (2020). https://doi.org/10.3390/biomimetics5040054

    Article  CAS  Google Scholar 

  45. Burji, S., Liszka, K.J., Chan, C.C.: Malware analysis using reverse engineering and data mining tools. In: 2010 International Conference on System Science and Engineering ICSSE 2010, pp. 619–624 (2010). https://doi.org/10.1109/ICSSE.2010.5551719

  46. Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F., Ramani, K.: Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 80, 170–178 (2014). https://doi.org/10.1016/j.jclepro.2014.05.084

    Article  Google Scholar 

  47. Le, V., Le, M.: Imaging quality improvement for wavefront colding system with radially symmetrical phase mask. Opt. Quantum Electron. 55, 1–11 (2023). https://doi.org/10.1007/s11082-023-04750-8

    Article  Google Scholar 

  48. Agisoft, L.L.C.: Agisoft Metashape User Manual, Professional Edition, Version 1.6. Agisoft LLC, St. Petersburg Russia (2006)

    Google Scholar 

  49. Rhinoceros, I.: Rhinoceros 6 User’s Manual. Seattle, USA (2018)

    Google Scholar 

  50. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13, 417–428 (2011). https://doi.org/10.1007/s10035-010-0239-y

    Article  Google Scholar 

  51. Yang, T., Rao, Y., Li, B., Chen, H., Yu, Z., Zhang, Z., Song, Y., Wu, H.: A novel physical modeling technique for slope failure caused by strength reduction: comparisons with DEM simulation. Granul. Matter 25, 1–17 (2023). https://doi.org/10.1007/s10035-023-01317-y

    Article  Google Scholar 

  52. Li, J., Huang, Y., Li, W., Yu, H., Ouyang, S., Guo, Y., Gao, H., Shi, Y., Zhu, L.: The 3D reconstruction of a digital model for irregular gangue blocks and its application in PFC numerical simulation. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01500-w

    Article  Google Scholar 

  53. Itasca Consulting Group Inc: Manual of Particle Flow Code in 3-Dimension. Itasca Consulting Group Inc., Minneapolis (2008)

    Google Scholar 

  54. Taghavi, R.: Automatic clump generation based on mid-surface. In: 2nd International FLAC/DEM Symposium, vol. 1, pp. 791–797 (2011)

  55. Zhou, Y., Sheng, G., Qiao, S., Zhou, L., Cai, J., Xu, H.: A determination method for the shear strength of soil-rock mixture considering the size effect and its application. Front. Mater. 9, 1–15 (2022). https://doi.org/10.3389/fmats.2022.1075310

    Article  CAS  Google Scholar 

  56. Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q., Dong, S.: Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: a numerical study. Eng. Geol. 253, 36–46 (2019). https://doi.org/10.1016/j.enggeo.2019.03.011

    Article  ADS  Google Scholar 

  57. Siegmann, E., Enzinger, S., Toson, P., Doshi, P., Khinast, J., Jajcevic, D.: Massively speeding up DEM simulations of continuous processes using a DEM extrapolation. Powder Technol. 390, 442–455 (2021). https://doi.org/10.1016/j.powtec.2021.05.067

    Article  CAS  Google Scholar 

  58. Radeke, C.A., Glasser, B.J., Khinast, J.G.: Large-scale powder mixer simulations using massively parallel GPU architectures. Chem. Eng. Sci. 65, 6435–6442 (2010). https://doi.org/10.1016/j.ces.2010.09.035

    Article  CAS  Google Scholar 

  59. Fu, X., Ding, H., Sheng, Q., Zhang, Z., Yin, D., Chen, F.: Fractal analysis of particle distribution and scale effect in a soil-rock mixture. Fractal Fract. 6, 120 (2022). https://doi.org/10.3390/fractalfract6020120

    Article  Google Scholar 

  60. Medley, E.W.: The Engineering Characterization of Melanges and Similar Block-in-Matrix Rocks (Bimrocks). University of California, Berkeley (1994)

    Google Scholar 

  61. Medley, E., Lindquist, E.S.: The engineering significance of the scale-independence of some Franciscan melanges in California, USA. In: The 35th US symposium on rock mechanics (USRMS) (1995)

  62. Khorasani, E., Amini, M., Hossaini, M.F., Medley, E.: Statistical analysis of bimslope stability using physical and numerical models. Eng. Geol. 254, 13–24 (2019). https://doi.org/10.1016/j.enggeo.2019.03.023

    Article  Google Scholar 

  63. Medley, E.: Orderly characterization of chaotic Franciscan Melanges. Eng. Geol. 19, 20–33 (2001)

    Google Scholar 

  64. Liu, Z., Zhou, N., Zhang, J.: Random gravel model and particle flow based numerical biaxial test of solid backfill materials. Int. J. Min. Sci. Technol. 23, 463–467 (2013). https://doi.org/10.1016/j.ijmst.2013.07.001

    Article  Google Scholar 

  65. Bahaaddini, M., Sharrock, G., Hebblewhite, B.K.: Numerical direct shear tests to model the shear behaviour of rock joints. Comput. Geotech. 51, 101–115 (2013). https://doi.org/10.1016/j.compgeo.2013.02.003

    Article  Google Scholar 

  66. Cho, N., Martin, C.D., Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44, 997–1010 (2007). https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  67. Park, J.W., Song, J.J.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46, 1315–1328 (2009). https://doi.org/10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  68. Tang, L., Li, G., Luo, T., Jin, L., Yu, Y., Sun, Q., Li, G.: Cold regions science and technology mechanism mechanism of shear strength deterioration of soil-rock mixture after freeze–thaw cycles. Cold Reg. Sci. Technol. 200, 103585 (2022). https://doi.org/10.1016/j.coldregions.2022.103585

    Article  Google Scholar 

  69. Gao, W., Yang, H., Wang, L., Hu, R.: Numerical simulations of the soil–rock mixture mechanical properties considering the influence of rock block proportions by pfc2d. Materials (Basel). 14, 5442 (2021). https://doi.org/10.3390/ma14185442

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Xu, Z.H., Wang, W.Y., Lin, P., Xiong, Y., Liu, Z.Y., He, S.J.: A parameter calibration method for PFC simulation: development and a case study of limestone. Geomech. Eng. 22, 97–108 (2020). https://doi.org/10.12989/gae.2020.22.1.097

    Article  CAS  Google Scholar 

  71. Xu, Z., Wang, Z., Wang, W., Lin, P., Wu, J.: An integrated parameter calibration method and sensitivity analysis of microparameters on mechanical behavior of transversely isotropic rocks. Comput. Geotech. 142, 104573 (2022). https://doi.org/10.1016/j.compgeo.2021.104573

    Article  Google Scholar 

  72. Tu, Y.L., Wang, X.C., Lan, Y.Z., Wang, J.B., Liao, Q.: Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM. Geomech. Eng. 30, 27–44 (2022). https://doi.org/10.12989/gae.2022.30.1.027

    Article  Google Scholar 

  73. Yao, Y., Li, J., Ni, J., Liang, C., Zhang, A.: Effects of gravel content and shape on shear behaviour of soil-rock mixture: experiment and DEM modelling. Comput. Geotech. 141, 104476 (2022). https://doi.org/10.1016/j.compgeo.2021.104476

    Article  Google Scholar 

  74. Zhang, Z., Sheng, Q., Fu, X., Zhou, Y., Huang, J., Du, Y.: An approach to predicting the shear strength of soil-rock mixture based on rock block proportion. Bull. Eng. Geol. Environ. 79, 2423–2437 (2020). https://doi.org/10.1007/s10064-019-01658-0

    Article  CAS  Google Scholar 

  75. Chang, W.J., Phantachang, T.: Effects of gravel content on shear resistance of gravelly soils. Eng. Geol. 207, 78–90 (2016). https://doi.org/10.1016/j.enggeo.2016.04.015

    Article  Google Scholar 

  76. Mahdevari, S., Moarefvand, P.: Experimental investigation of fractal dimension effect on deformation modulus of an artificial bimrock. Bull. Eng. Geol. Environ. 77, 1729–1737 (2018). https://doi.org/10.1007/s10064-017-1074-8

    Article  Google Scholar 

  77. Wang, S., Zhu, Y., Ma, W., Wang, Z., Li, G.: Effects of rock block content and confining pressure on dynamic characteristics of soil-rock mixtures. Eng. Geol. 280, 105963 (2021). https://doi.org/10.1016/j.enggeo.2020.105963

    Article  Google Scholar 

  78. Ren, J., Xiao, M., Liu, G.: Rock Macro–Meso parameter calibration and optimization based on improved bp algorithm and response surface method in PFC 3D. Energies 15, 6290 (2022). https://doi.org/10.3390/en15176290

    Article  Google Scholar 

  79. Wu, H., Dai, B., Zhao, G., Chen, Y., Tian, Y.: A novel method of calibrating micro-scale parameters of PFC model and experimental validation. Appl. Sci. 10, 3221 (2020). https://doi.org/10.3390/app10093221

    Article  CAS  Google Scholar 

  80. Wang, W., Liu, Y.: The influence of macro and micro parameters of rock-like materials of parallel bonding model. Sci. Technol. Eng. 20, 9155–9162 (2022)

    Google Scholar 

  81. Potyondy, D.O.: Simulating stress corrosion with a bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 44, 677–691 (2007). https://doi.org/10.1016/j.ijrmms.2006.10.002

    Article  Google Scholar 

  82. Chen, Y., Lin, H., Xie, S., Ding, X., He, D., Yong, W., Gao, F.: Effect of joint microcharacteristics on macroshear behavior of single-bolted rock joints by the numerical modelling with PFC. Environ. Earth Sci. 81, 1–12 (2022). https://doi.org/10.1007/s12665-022-10411-y

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 51808083), the China Postdoctoral Science Foundation (No. 2020M673110), the Technology Innovation and Application Development Project of Chongqing in China (No. CSTB2022TIAD-GPX0046), the Construction Science and Technology Plan Project of Chongqing in China (No. CKZ 2022-1-3), the Technology Innovation and Application Development Project of Nan'an District of Chongqing(CN) (No.2022-24), the Research and Innovation Program for Graduate Students of Chongqing in China (No. 2022S0002).

Funding

National Natural Science Foundation of China (No. 51808083), China Postdoctoral Science Foundation (No. 2020M673110), Technology Innovation and Application Development Project of Chongqing in China (No. CSTB2022TIAD-GPX0046), Construction Science and Technology Plan Project of Chongqing in China (No. CKZ 2022–1-3), Research and Innovation Program for Graduate Students of Chongqing in China (No. 2022S0002), Technology Innovation and Application Development Project of Nan'an District of Chongqing(CN) (No. 2022–24).

Author information

Authors and Affiliations

Authors

Contributions

TY—Methodology, Writing-review & editing. LH—Writing—review & editing, Validation. FZ—Software, Formal analysis. Writing-original draft. CH—Formal analysis, Supervision. LX—Software, Investigation. ZL—Software, Formal analysis. YW—Integration.

Corresponding author

Correspondence to Yiliang Tu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Long, H., Fang, Z. et al. A new numerical method for constructing the three-dimensional microstructure of S-RM using digital image processing technology. Granular Matter 26, 24 (2024). https://doi.org/10.1007/s10035-023-01393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01393-0

Keywords

Navigation