Skip to main content
Log in

Statistical interdependence of multi-scale 3D morphological descriptors of sand grains

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle morphology at different length scales is important in understanding the mechanical behaviour of granular materials. In this sense, it is crucial to accurately describe and measure the size and shape of the grains using suitable definitions of morphological descriptors. Most of the research up until this point has analyzed particle shape in a two-dimensional framework, and sieving has typically been used to determine size. This paper describes the use of x-ray micro-computed tomography (µCT) which enables the visualization and quantification of three-dimensional particle morphology. Spherical harmonic analysis was used to reconstruct the three-dimensional (3D) realistic surface of the granular particles. 3D morphological descriptors were then introduced and computed to obtain the overall form, local features, and surface textures of the particle morphology based on the spherical harmonic reconstructed surface. To describe the fractal nature of the surfaces of natural sand particle morphology, the 3D fractal dimension was quantified using spherical harmonic-based fractal analysis. Complete volume-based distributions of particle morphological descriptors were presented and compared for four different sand samples with different grain size and shape characteristics. According to the statistical analysis, there is a clear correlation between the shape parameters at various characteristic scales, indicating that they are not independent measures. The correlation between any two parameters was observed to rely on the distance between the characteristic scales of the morphological parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jo, S.A., Kim, E.K., Cho, G.C., Lee, S.W.: Particle shape and crushing effects on direct shear behavior using dem. Soils Found. 51, 701–712 (2011). https://doi.org/10.3208/sandf.51.701

    Article  Google Scholar 

  2. Tian, J., Liu, E., He, C.: Shear band analysis of granular materials considering effects of particle shape. Acta Mech. 231, 4445–4461 (2020). https://doi.org/10.1007/s00707-020-02771-y

    Article  Google Scholar 

  3. Lashkari, A., Jamali, V.: Global and local sand–geosynthetic interface behaviour. Geotechnique 71, 346–367 (2021). https://doi.org/10.1680/jgeot.19.P.109

    Article  Google Scholar 

  4. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  5. Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol. 278, 286–305 (2015). https://doi.org/10.1016/j.powtec.2015.02.046

    Article  CAS  Google Scholar 

  6. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011). https://doi.org/10.1016/j.powtec.2010.09.030

    Article  CAS  Google Scholar 

  7. Zhao, S., Zhou, X., Liu, W.: Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17, 793–806 (2015). https://doi.org/10.1007/s10035-015-0593-x

    Article  CAS  Google Scholar 

  8. Danesh, A., Mirghasemi, A.A., Palassi, M.: Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM). Transp. Geotech. 23, 100357 (2020). https://doi.org/10.1016/j.trgeo.2020.100357

    Article  Google Scholar 

  9. Zhou, Y., Wang, H., Zhou, B., Li, J.: DEM-aided direct shear testing of granular sands incorporating realistic particle shape. Granul. Matter 20, 20–55 (2018). https://doi.org/10.1007/s10035-018-0828-8

    Article  Google Scholar 

  10. Alshibli, K.A., Alsaleh, M.I.: Characterizing surface roughness and shape of sands using digital microscopy. J. Comput. Civ. Eng. 18, 36–45 (2004). https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(36)

    Article  Google Scholar 

  11. Altuhafi, F., O’Sullivan, C., Cavarretta, I.: Analysis of an image-based method to quantify the size and shape of sand particles. J. Geotech. Geoenvironmental Eng. 139, 1290–1307 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855

    Article  Google Scholar 

  12. Mora, C.F., Kwan, A.K.H.: Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 30, 351–358 (2000). https://doi.org/10.1016/S0008-8846(99)00259-8

    Article  CAS  Google Scholar 

  13. Sukumaran, B., Ashmawy, A.K.: Quantitative characterisation of the geometry of discrete particles. Géotechnique. 51, 619–627 (2001). https://doi.org/10.1680/geot.51.7.619.51393

    Article  Google Scholar 

  14. Vangla, P., Roy, N., Latha, G.M.: Image based shape characterization of granular materials and its effect on kinematics of particle motion. Granul. Matter 20, 1–19 (2018). https://doi.org/10.1007/s10035-017-0776-8

    Article  Google Scholar 

  15. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Non-invasive characterization of particle morphology of natural sands. Soils Found. 52, 712–722 (2012). https://doi.org/10.1016/j.sandf.2012.07.011

    Article  Google Scholar 

  16. Zheng, W., Hu, X., Tannant, D.D., Zhang, K., Xu, C.: Characterization of two- and three-dimensional morphological properties of fragmented sand grains. Eng. Geol. 263, 105358 (2019). https://doi.org/10.1016/j.enggeo.2019.105358

    Article  Google Scholar 

  17. Alshibli, K.A., Druckrey, A.M., Al-Raoush, R.I., Weiskittel, T., Lavrik, N.V.: Quantifying morphology of sands using 3D imaging. J. Mater. Civ. Eng. 27, 1–10 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001246

    Article  Google Scholar 

  18. Kong, D., Fonseca, J.: Quantification of the morphology of shelly carbonate sands using 3D images. Geotechnique 68, 249–261 (2018). https://doi.org/10.1680/jgeot.16.P.278

    Article  Google Scholar 

  19. Zhou, B., Wang, J.: Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis. Int. J. Numer. Anal. Methods Geomech. 41, 93–109 (2017). https://doi.org/10.1002/nag.2548

    Article  CAS  Google Scholar 

  20. Zhao, B., Wang, J.: 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  CAS  Google Scholar 

  21. Zhou, B., Wang, J., Wang, H.: Three-dimensional sphericity, roundness and fractal dimension of sand particles. Geotechnique 68, 18–30 (2018). https://doi.org/10.1680/jgeot.16.P.207

    Article  Google Scholar 

  22. Su, D., Yan, W.M.: 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector. Powder Technol. 323, 8–23 (2018). https://doi.org/10.1016/J.POWTEC.2017.09.030

    Article  CAS  Google Scholar 

  23. Yang, H.W., Lourenço, S.D.N., Baudet, B.A.: 3D fractal analysis of multi-scale morphology of sand particles with μCT and interferometer. Geotechnique 72, 20–33 (2022). https://doi.org/10.1680/jgeot.19.P.120

    Article  Google Scholar 

  24. Alam, M.F., Haque, A.: A new cluster analysis-marker-controlled watershed method for separating particles of granular soils. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10101195

  25. Shi, Y., Yan, W.M.: Segmentation of irregular porous particles of various sizes from X-ray microfocus computer tomography images using a novel adaptive watershed approach. Geotech. Lett. 5, 299–305 (2015). https://doi.org/10.1680/jgele.15.00100

    Article  Google Scholar 

  26. Sun, Q., Zheng, J., Li, C.: Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images. Powder Technol. 356, 295–303 (2019). https://doi.org/10.1016/j.powtec.2019.08.028

    Article  CAS  Google Scholar 

  27. Zheng, J., Hryciw, R.D.: Segmentation of contacting soil particles in images by modified watershed analysis. Comput. Geotech. 73, 142–152 (2016). https://doi.org/10.1016/j.compgeo.2015.11.025

    Article  Google Scholar 

  28. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods. 4, 709–712 (1988). https://doi.org/10.1002/cnm.1630040603

    Article  Google Scholar 

  29. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface extraction from volume data. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. pp. 57–66. , Los Angeles, CA, USA (2001)

  30. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15, 95–108 (2013). https://doi.org/10.1007/s10035-012-0380-x

    Article  Google Scholar 

  31. Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014). https://doi.org/10.1016/j.cma.2014.06.022

    Article  ADS  Google Scholar 

  32. Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308, 721–722 (1984). https://doi.org/10.1038/308721a0

    Article  CAS  ADS  Google Scholar 

  33. Kaye, B.H.: A random walk through fractal dimensions. John Wiley & Sons, Ltd (1994)

    Book  Google Scholar 

  34. Clarke, K.C.: Computation of the fractal dimension of topographic surfaces using the triangualr prism surface area method. Comput. Geosci. 12, 713–722 (1986)

    Article  ADS  Google Scholar 

  35. Yang, H., Baudet, B.A., Yao, T.: Characterization of the surface roughness of sand particles using an advanced fractal approach. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. p. 20160524 (2016)

  36. Charkaluk, E., Bigerelle, M., Iost, A.: Fractals and fracture. Eng. Fract. Mech. 61, 119–139 (1998). https://doi.org/10.1016/S0013-7944(98)00035-6

    Article  Google Scholar 

  37. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43, 250–280 (1935)

    Article  ADS  Google Scholar 

  38. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenvironmental Eng. 132, 591–602 (2006). https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  39. Barrett, P.J.: The shape of rock particles, a critical review. Sedimentology 27, 291–303 (1980)

    Article  ADS  Google Scholar 

  40. Zheng, W., Hu, X., Tannant, D.D.: Shape characterization of fragmented sand grains via x-ray computed tomography imaging. Int. J. Geomech. 20, 1–14 (2020). https://doi.org/10.1061/(asce)gm.1943-5622.0001599

    Article  Google Scholar 

  41. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  42. Zhou, B., Wang, J.: Random generation of natural sand assembly using micro x-ray tomography and spherical harmonics. Geotech. Lett. 5, 6–11 (2015). https://doi.org/10.1680/geolett.14.00082

    Article  Google Scholar 

  43. Zhou, B., Wang, J., Zhao, B.: Micromorphology characterization and reconstruction of sand particles using micro x-ray tomography and spherical harmonics. Eng. Geol. 184, 126–137 (2015). https://doi.org/10.1016/j.enggeo.2014.11.009

    Article  Google Scholar 

  44. Sun, Q., Zheng, J.: Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics. Comput. Part. Mech. 8, 215–235 (2021). https://doi.org/10.1007/s40571-020-00325-6

    Article  Google Scholar 

  45. Masad, E., Saadeh, S., Al-Rousan, T., Garboczi, E., Little, D.: Computations of particle surface characteristics using optical and x-ray CT images. Comput. Mater. Sci. 34, 406–424 (2005). https://doi.org/10.1016/j.commatsci.2005.01.010

    Article  CAS  Google Scholar 

  46. Capozza, R., Hanley, K.J.: A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM. Powder Technol. 378, 528–537 (2021). https://doi.org/10.1016/j.powtec.2020.10.015

    Article  CAS  Google Scholar 

  47. Deiros Quintanilla, I., Combe, G., Emeriault, F., Voivret, C., Ferellec, J.F.: X-ray CT analysis of the evolution of ballast grain morphology along a Micro-Deval test: key role of the asperity scale. Granul. Matter 21, 21–30 (2019). https://doi.org/10.1007/s10035-019-0881-y

    Article  Google Scholar 

  48. Fu, R., Hu, X., Zhou, B.: Discrete element modeling of crushable sands considering realistic particle shape effect. Comput. Geotech. 91, 179–191 (2017). https://doi.org/10.1016/j.compgeo.2017.07.016

    Article  Google Scholar 

  49. Zheng, W., Hu, X., Tannant, D.D., Zhou, B.: Quantifying the influence of grain morphology on sand hydraulic conductivity: a detailed pore-scale study. Comput. Geotech. 135, 104147 (2021). https://doi.org/10.1016/j.compgeo.2021.104147

    Article  Google Scholar 

  50. Wei, D., Wang, J., Nie, J., Zhou, B.: Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis. Comput. Geotech. 104, 1–12 (2018). https://doi.org/10.1016/j.compgeo.2018.08.002

    Article  ADS  Google Scholar 

  51. Zhou, B., Wei, D., Ku, Q., Wang, J., Zhang, A.: Study on the effect of particle morphology on single particle breakage using a combined finite-discrete element method. Comput. Geotech. 122, 103532 (2020). https://doi.org/10.1016/j.compgeo.2020.103532

    Article  Google Scholar 

  52. Clayton, C.R.I., Abbireddy, C.O.R., Schiebel, R.: A method of estimating the form of coarse particulates. Geotechnique 59, 493–501 (2009). https://doi.org/10.1680/geot.2007.00195

    Article  Google Scholar 

  53. Angelidakis, V., Nadimi, S., Utili, S.: Elongation, flatness and compactness indices to characterise particle form. Powder Technol. 396, 689–695 (2022). https://doi.org/10.1016/j.powtec.2021.11.027

    Article  CAS  Google Scholar 

  54. Zingg, T.: Beitrag zur Schotteranalyse. Schweiz. Miner. Petrogr. Mitt. 15, 52–56 (1935)

    Google Scholar 

  55. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimontology. 55, 31–63 (2008)

    Article  Google Scholar 

  56. Buscarnera, G., Einav, I.: The mechanics of brittle granular materials with coevolving grain size and shape. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (2021)

  57. Garboczi, E.J.: Three-dimensional mathematical analysis of particle shape using x-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concr. Res. 32, 1621–1638 (2002). https://doi.org/10.1016/S0008-8846(02)00836-0

    Article  CAS  Google Scholar 

  58. Do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, New Jersey, USA (1976)

    Google Scholar 

  59. Russ, J.: Fractal surfaces. Plenum Press, New York and London, Rayleigh, North Carolina (1994)

    Book  Google Scholar 

  60. Chan, K.L.: Quantitative characterization of electron micrograph image using fractal feature. IEEE Trans. Biomed. Eng. 42, 1033–1037 (1995)

    Article  CAS  PubMed  Google Scholar 

  61. Quevedo, R., Mendoza, F., Aguilera, J.M., Chanona, J., Gutiérrez-López, G.: Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. J. Food Eng. 84, 509–515 (2008). https://doi.org/10.1016/J.JFOODENG.2007.06.013

    Article  Google Scholar 

  62. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. Eurographics Symp. Geom. Process. 43, 156–164 (2003)

    Google Scholar 

  63. Matsushima, T., Chang, C.S.: Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter 13, 269–276 (2011). https://doi.org/10.1007/s10035-011-0263-6

    Article  Google Scholar 

  64. Nie, Z., Liang, Z., Wang, X.: A three-dimensional particle roundness evaluation method. Granul. Matter 20, 1–11 (2018). https://doi.org/10.1007/s10035-018-0802-5

    Article  CAS  Google Scholar 

  65. Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112, 205–216 (1990)

    Article  Google Scholar 

  66. Bagi, K., Orosz, Á.: A new variable for characterising irregular element geometries in experiments and DEM simulations. In: Proceedings–European Council for Modelling and Simulation, ECMS. pp. 256–260 (2020)

  67. Potticary M., Zervos A., H.J.: An investigation into the effect of particle platyness on the strength of granular materials using the discrete element method. In: Proceedings of the 4th International Conference on Particle-Based Methods—Fundamentals and Applications, CIMNE 2015. pp. 767–778 (2015)

Download references

Acknowledgements

The computational facilities used for this study were procured through the DRIP funding of the Department of Civil Engineering of the Indian Institute of Science. Authors are grateful to the Ministry of Water Resources, India for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Khan.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have seemed to affect their work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Latha, G.M. Statistical interdependence of multi-scale 3D morphological descriptors of sand grains. Granular Matter 26, 19 (2024). https://doi.org/10.1007/s10035-023-01390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01390-3

Keywords

Navigation