Skip to main content
Log in

Macro-elasticity of granular materials composed of polyhedral particles

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle shape variability is a key to understanding the rich behavior of granular materials. Polyhedra are among the most common particle shapes due to their ubiquitous origins in nature such as rock fragmentation and mineral crystallisation. Because of their faceted shape, polyhedral particles tend to assemble in jammed structures in which face-face and face-edge contacts between particles control the packing-level properties. In this paper, we use tri-periodic particle dynamics simulations to derive for the first time a generic analytical expression of the elastic moduli of polyhedral and spherical particle packings subjected to triaxial compression as a function of two contact network variables: (1) a “constraint number" that accounts for the face-face and edge-face contacts between polyhedra and is reduced to the coordination number in the case of spherical particles, and (2) the contact orientation anisotropy induced by compression. This expression accurately predicts the simulated evolution of elastic moduli during compression, revealing thereby the origins of the higher elastic moduli of polyhedral particle packings. We show that particle shape affects the elastic moduli through its impact on the contact network and the level of nonaffine particle displacements is the same for the simulated shapes. Its nearly constant value during compression underlies the constant values of our model parameters. By connecting the elastic moduli to the contact network through parameters that depend on particle shape, our model makes it possible to extract both the connectivity and anisotropy of granular materials from the knowledge of particle shape and measurements of elastic moduli.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: The physics of granular materials. Phys. Today 49, 32–38 (1996). https://doi.org/10.1063/1.881494

    Article  Google Scholar 

  2. Herrmann, H.J., Hovi, J.-P., Luding, S.: Phys. Dry Granul. Media, vol. 350. Springer Science & Business Media (2013)

    Google Scholar 

  3. Radjai, F., Roux, J.-N., Daouadji, A.: Modeling granular materials: Century-long research across scales. J. Eng. Mech. 143, 04017002 (2017)

    Google Scholar 

  4. Donev, A., et al.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004). https://doi.org/10.1126/science.1093010

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Cleary, P.: The effect of particle shape on simple shear flows. Powder Technol Powder Technol. 179, 144–163 (2008)

    CAS  Google Scholar 

  6. Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41, 729–741 (2009)

    Google Scholar 

  7. Azéma, E., Radjaï, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81, 051304 (2010)

    ADS  Google Scholar 

  8. Saint-Cyr, B., Delenne, J.-Y., Voivret, C., Radjai, F., Sornay, P.: Rheology of granular materials composed of nonconvex particles. Phys. Rev. E 84, 041302 (2011). https://doi.org/10.1103/PhysRevE.84.041302

    Article  CAS  ADS  Google Scholar 

  9. CEGEO et al.: Particle shape dependence in 2d granular media. Europhys. Lett. 98, 44008 (2012). https://doi.org/10.1209/0295-5075/98/44008

  10. Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013)

    ADS  Google Scholar 

  11. Athanassiadis, A.G., et al.: Particle shape effects on the stress response of granular packings. Soft Matter 10, 48–59 (2014). https://doi.org/10.1039/C3SM52047A

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Wegner, S., et al.: Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matter 10, 5157–5167 (2014). https://doi.org/10.1039/C4SM00838C

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Nguyen, D.-H., Azéma, É., Radjai, F., Sornay, P.: Effect of size polydispersity versus particle shape in dense granular media. Phys. Rev. E 90, 012202 (2014)

    ADS  Google Scholar 

  14. Nguyen, D.-H., Azéma, E., Sornay, P., Radjai, F.: Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91, 032203 (2015)

    ADS  Google Scholar 

  15. Zhao, S., Zhou, X.: Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies. Granul. Matter 19, 38 (2017). https://doi.org/10.1007/s10035-017-0725-6

    Article  CAS  Google Scholar 

  16. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.: All you need is shape: Predicting shear banding in sand with ls-dem. J. Mech. Phys. Solids 111, 596965 (2017)

    Google Scholar 

  17. Zhao, S., Zhao, J.: A poly-superellipsoid-based approach on particle morphology for dem modeling of granular media. Int. J. Num. Anal. Methods Geomech. 43, 2147–2169 (2019)

    Google Scholar 

  18. Marteau, E., Andrade, J.E.: An experimental study of the effect of particle shape on force transmission and mobilized strength of granular materials. J. Appl. Mech. 88, 518184 (2021). https://doi.org/10.1115/1.4051818

    Article  Google Scholar 

  19. Agnolin, I., Kruyt, N.P.: On the elastic moduli of two-dimensional assemblies of disks: Relevance and modeling of fluctuations in particle displacements and rotations. Comput. Math. Appl. 55, 245–256 (2008)

    Google Scholar 

  20. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. iii. elastic properties. Phys. Rev. E 76, 061304 (2007)

    MathSciNet  ADS  Google Scholar 

  21. Kruyt, N.P., Agnolin, I., Luding, S., Rothenburg, L.: Micromechanical study of elastic moduli of loose granular materials. J. Mech. Phys. Solids 58, 1286–1301 (2010)

    MathSciNet  ADS  Google Scholar 

  22. La Ragione, L., Magnanimo, V.: Evolution of the effective moduli of an anisotropic, dense, granular material. Granul. Matter 14, 749–757 (2012)

    Google Scholar 

  23. Khalili, M.H., Roux, J.-N., Pereira, J.-M., Brisard, S., Bornert, M.: Numerical study of one-dimensional compression of granular materials. ii. elastic moduli, stresses, and microstructure. Phys. Rev. E 95, 032908 (2017)

    PubMed  ADS  Google Scholar 

  24. Makse, H.A., Gland, N., Johnson, D.L., Schwartz, L.: Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E 70, 061302 (2004)

    ADS  Google Scholar 

  25. Agnolin, I., Jenkins, J.T., La Ragione, L.: A continuum theory for a random array of identical, elastic, frictional disks. Mech. Mater. 38, 687–701 (2006)

    Google Scholar 

  26. Makse, H.A., Gland, N., Johnson, D.L., Schwartz, L.M.: Why effective medium theory fails in granular materials. Phys. Rev. Lett. 83, 5070 (1999)

    CAS  ADS  Google Scholar 

  27. Zaccone, A., Scossa-Romano, E.: Approximate analytical description of the nonaffine response of amorphous solids. Phys. Rev. B 83, 184205 (2011)

    ADS  Google Scholar 

  28. Richefeu, V., Villard, P.: Model. Gravity Hazards Rockfalls Landslides. Elsevier (2016)

    Google Scholar 

  29. Herrmann, H., Luding, S.: Modeling granular media on the computer. Contin. Mech. Thermodyn. 10, 189–231 (1998)

    MathSciNet  ADS  Google Scholar 

  30. Thornton, C., Antony, S.: Quasi-static shear deformation of a soft particle system. Powder Technol. 109, 179–191 (2000)

    CAS  Google Scholar 

  31. Moreau, J.J.: Sorne numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A Solids 13, 93–114 (1994)

    Google Scholar 

  32. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 715–728 (2009)

    Google Scholar 

  33. Radjai, F., Dubois, F.: Discrete-Element Modeling of Granular Materials. Wiley, Iste (2011)

    Google Scholar 

  34. Richefeu, V., El Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006)

    ADS  Google Scholar 

  35. Dippel, S., Batrouni, G., Wolf, D.: How transversal fluctuations affect the friction of a particle on a rough incline. Phys. Rev. E 56, 3645 (1997)

    CAS  ADS  Google Scholar 

  36. Peyneau, P.-E., Roux, J.-N.: Solidlike behavior and anisotropy in rigid frictionless bead assemblies. Phys. Rev. E 78, 041307 (2008)

    ADS  Google Scholar 

  37. Radjai, F.: Multi-periodic boundary conditions and the contact dynamics method. Comptes Rendus Mécanique 346, 263–277 (2018)

    ADS  Google Scholar 

  38. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Google Scholar 

  39. MIDI, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

  40. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40, 1–24 (2008)

    MathSciNet  ADS  Google Scholar 

  41. Fast, L., Wills, J., Johansson, B., Eriksson, O.: Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B 51, 17431 (1995)

    CAS  ADS  Google Scholar 

  42. Lubarda, V., Chen, M.: On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3, 153–171 (2008)

    Google Scholar 

  43. Kruyt, N.P., Rothenburg, L.: Micromechanical bounds for the effective elastic moduli of granular materials. Int. J. Solids Struct. 39, 311–324 (2002)

    Google Scholar 

  44. Ezaoui, A., Benedetto, H.D.: Experimental measurements of the global anisotropic elastic behaviour of dry hostun sand during triaxial tests, and effect of sample preparation. Géotechnique 59, 621–635 (2009)

    Google Scholar 

  45. Bathurst, R.J., Rothenburg, L.: Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater. 9, 65–80 (1990)

    Google Scholar 

  46. Radjai, F., Delenne, J.-Y., Azéma, E., Roux, S.: Fabric evolution and accessible geometrical states in granular materials. Granul. Matter 14, 259–264 (2012)

    Google Scholar 

  47. Zhao, C.-F., Kruyt, N.P.: An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials. Int. J. Solids Struct. 196, 53–66 (2020)

    Google Scholar 

  48. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61 (1998)

    CAS  ADS  Google Scholar 

  49. Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soils Foundat. 12, 17–36 (1972)

    Google Scholar 

  50. Satake, M.: Constitution of mechanics of granular materials through graph representation. Theor. Appl. Mech. 26, 257–266 (1978)

    Google Scholar 

  51. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Google Scholar 

  52. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998). https://doi.org/10.1103/PhysRevLett.80.61

    Article  CAS  ADS  Google Scholar 

  53. Broedersz, C.P., Mao, X., Lubensky, T.C., MacKintosh, F.C.: Criticality and isostaticity in fibre networks. Nat. Phys. 7, 983–988 (2011)

    CAS  Google Scholar 

  54. Broedersz, C., Sheinman, M., MacKintosh, F.: Filament-length-controlled elasticity in 3d fiber networks. Phys. Rev. Lett. 108, 078102 (2012)

    CAS  PubMed  ADS  Google Scholar 

  55. Head, D.A., Levine, A.J., MacKintosh, F.: Deformation of cross-linked semiflexible polymer networks. Phys. Rev. Lett. 91, 108102 (2003)

    PubMed  ADS  Google Scholar 

  56. Mathesan, S., Tripathy, M., Srivastava, A., Ghosh, P.: Non-affine deformation of free volume during strain dependent diffusion in polymer thin films. Polymer 155, 177–186 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We warmly thank Carlos Santamarina for fruitful discussions. The authors acknowledge financial support by SIFCO project (CEA), EDF, and ORANO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhang Radjai.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 573 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, D.C., Amarsid, L., Delenne, JY. et al. Macro-elasticity of granular materials composed of polyhedral particles. Granular Matter 26, 6 (2024). https://doi.org/10.1007/s10035-023-01382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01382-3

Keywords

Navigation