Skip to main content

Advertisement

Log in

Breakage probability of feed pellet under repeated compression and impacts

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

It is a common phenomenon that feed pellet is broken by compression and impact during the processing of manufacturing and production. At present, the breakage characteristics of feed pellet under repeated loading are not clear. In order to predict the breakage probability of feed pellet accurately, the compound feed for piglets feeding was selected to conduct repeated compression and repeated impacts tests in this paper. Firstly, the quasi-static repeated compression tests were conducted, and it was found that the cyclic stiffening occurred due to the densification of feed pellet during the repeated compression. Secondly, the quasi-static repeated compression tests in radial and axial direction were performed under different loading forces. And the results showed that the compressive energy required for feed pellet breakage increased with the decrease of loading force. Then, two-parameter Weibull function was used to fit the relationship between mass-specific compressive energy and breakage probability. And the fitting results R2 were all greater than 0.9 and the fitting effect was good. Finally, dynamic repeated impacts tests with different impact velocities were conducted. The results showed that the impact times required for feed pellet to reach the same breakage probability decreased, with the increase of impact velocity. Three-parameter Weibull function was used to fit the relationship between mass-specific impact energy and breakage probability. Good fitting effect was obtained and R2 was greater than 0.95. The fitting results can predict the breakage probability of feed pellet in the process of repeated loading, and provide guidance for the feed pellet production and transportation.

Graphical abstract

The breakage characteristics of feed pellet under reteated loading

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Thomas, M., van der Poel, A.F.B.: Physical quality of pelleted animal feed. 1. Criteria for pellet quality. Anim Feed Sci Tech 61(1–4), 89–112 (1996). https://doi.org/10.1016/0377-8401(96)00949-2

    Article  Google Scholar 

  2. Halstensen, M., Ihunegbo, F.N., Ratnayake, C., Sveinsvold, K.: Online acoustic chemometric monitoring of fish feed pellet velocity in a pneumatic conveying system. Powder Technol 263, 104–111 (2014). https://doi.org/10.1016/j.powtec.2014.05.007

    Article  Google Scholar 

  3. Yang, G.Q., Sun, J.Y., Guo, D.X., Tian, H., Li, J.T.: Effects of dietary fiber source and crude fiber level on pellet quality, growth performance and meat quality of meat rabbits. Chin J Anim Nutr 27(10), 3084–3093 (2015). https://doi.org/10.3969/j.issn.1006-267x.2015.10.013

    Article  Google Scholar 

  4. Ardiaca Garcia, M., Montesinos Barcelo, A., Bonvehi Nadeu, C., Jekl, V.: Respiratory diseases in guinea pigs, chinchillas and degus. Vet Clin N Am Exot Anim Pract 24(2), 419–457 (2021). https://doi.org/10.1016/j.cvex.2021.02.001

    Article  Google Scholar 

  5. Chang, C.M., Fang, W., Jao, R.C., Shyu, C.Z., Liao, I.C.: Development of an intelligent feeding controller for indoor intensive culturing of eel. Aquacult Eng 32(2), 343–353 (2005). https://doi.org/10.1016/j.aquaeng.2004.07.004

    Article  Google Scholar 

  6. Sun, H.Q., Zeng, Y.W., Ye, Y., Chen, X., Zeng, T.C.: Abnormal size effect of particle breakage probability under repeated impacts. Powder Technol 363, 629–641 (2020). https://doi.org/10.1016/j.powtec.2020.01.026

    Article  Google Scholar 

  7. Han, Y.L., Zhao, D., Chu, Y.H., Zhen, J.X., Li, G.R., Zhao, H.W., Jia, F.G.: Breakage behaviour of single rice particles under compression and impact. Adv Powder Technol 32(12), 4635–4650 (2021). https://doi.org/10.1016/j.apt.2021.10.017

    Article  Google Scholar 

  8. Rumpf, H.: Die einzelkornzerkleinerung als grundlage einer technischen zerkleinerungswissenschaft. Chem Ing Tech 37(3), 187–202 (1965). https://doi.org/10.1002/cite.330370303

    Article  Google Scholar 

  9. Couroyer, C., Ning, Z.M., Ghadiri, M., Brunard, N., Kolenda, F., Bortzmeyer, D., Laval, P.: Breakage of macroporous alumina beads under compressive loading: simulation and experimental validation. Powder Technol 105(1–3), 57–65 (1999). https://doi.org/10.1016/s0032-5910(99)00118-7

    Article  Google Scholar 

  10. Salman, A.D., Biggs, C.A., Fu, J., Angyal, I., Szabo, M., Hounslow, M.J.: An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol 128(1), 36–46 (2002). https://doi.org/10.1016/s0032-5910(02)00151-1

    Article  Google Scholar 

  11. Luding, S., Tomas, J.: Particles, contacts, bulk-behavior. Granul Matter 16(3), 279–280 (2014). https://doi.org/10.1007/s10035-014-0510-8

    Article  Google Scholar 

  12. Aarseth, K.A., Prestlokken, E.: Mechanical properties of feed pellets: Weibull analysis. Biosyst Eng 84(3), 349–361 (2003). https://doi.org/10.1016/s1537-5110(02)00264-7

    Article  Google Scholar 

  13. Aarseth, K.A.: Attrition of feed pellets during pneumatic conveying: the influence of velocity and bend radius. Biosyst Eng 89(2), 197–213 (2004). https://doi.org/10.1016/j.biosystemseng.2004.06.008

    Article  Google Scholar 

  14. Aarseth, K.A., Perez, V., Boe, J.K., Jeksrud, W.K.: Reliable pneumatic conveying of fish feed. Aquacult Eng 35(1), 14–25 (2006). https://doi.org/10.1016/j.aquaeng.2005.06.006

    Article  Google Scholar 

  15. Aas, T.S., Oehme, M., Sorensen, M., He, G., Lygren, I., Asgard, T.: Analysis of pellet degradation of extruded high energy fish feeds with different physical qualities in a pneumatic feeding system. Aquacult Eng 44(1), 25–34 (2011). https://doi.org/10.1016/j.aquaeng.2010.11.002

    Article  Google Scholar 

  16. Kong, X.R., Liu, J., Yang, T.Y., Su, Y.C., Geng, J., Niu, Z.Y.: Numerical simulation of feed pellet breakage in pneumatic conveying. Biosyst Eng 218, 31–42 (2022). https://doi.org/10.1016/j.biosystemseng.2022.03.012

    Article  Google Scholar 

  17. Kalman, H.: Attrition of powders and granules at various bends during pneumatic conveying. Powder Technol 112, 244–250 (2000). https://doi.org/10.1016/s0032-5910(00)00298-9

    Article  Google Scholar 

  18. Tavares, L.M., Cavalcanti, P.P., de Carvalho, R.M., da Silveira, M.W., Bianchi, M., Otaviano, M.: Fracture probability and fragment size distribution of fired Iron ore pellets by impact. Powder Technol 336, 546–554 (2018). https://doi.org/10.1016/j.powtec.2018.06.036

    Article  Google Scholar 

  19. Pauw, O.G., Mare, M.S.: The determination of optimum impact-breakage routes for an ore. Powder Technol 54, 3–13 (1988). https://doi.org/10.1016/0032-5910(88)80043-3

    Article  Google Scholar 

  20. Goder, D., Kalman, H., Ullmann, A.: Fatigue characteristics of granular materials. Powder Technol 122, 19–25 (2002). https://doi.org/10.1016/s0032-5910(01)00390-4

    Article  Google Scholar 

  21. Vervoorn, P.M.M., Austin, L.G.: The analysis of repeated breakage events as an equivalent rate process. Powder Technol 63(2), 141–147 (1990). https://doi.org/10.1016/0032-5910(90)80036-x

    Article  Google Scholar 

  22. Tavares, L.M., King, R.P.: Modeling of particle fracture by repeated impacts using continuum damage mechanics. Powder Technol 123(2–3), 138–146 (2002). https://doi.org/10.1016/s0032-5910(01)00438-7

    Article  Google Scholar 

  23. Han, T., Petukhov, Y., Levy, A., Kalman, H.: Theoretical and experimental study of multi-impact breakage of particles. Adv Powder Technol 17(2), 135–157 (2006). https://doi.org/10.1163/156855206775992328

    Article  Google Scholar 

  24. Rozenblat, Y., Levy, A., Kalman, H., Peyron, I., Ricard, F.: A model for particle fatigue due to impact loads. Powder Technol 239, 199–207 (2013). https://doi.org/10.1016/j.powtec.2013.01.059

    Article  Google Scholar 

  25. Beekman, W.J., Meesters, G.M.H., Becker, T., Gaertner, A., Gebert, M., Scarlett, B.: Failure mechanism determination for industrial granules using a repeated compression test. Powder Technol. 130(1–3), 367–376 (2003). https://doi.org/10.1016/s0032-5910(02)00238-3

    Article  Google Scholar 

  26. Russell, A., Mueller, P., Tomas, J.: Multiple Compression of moist spherical elastic–plastic zeolite 4A granules. Chem Eng Technol 36(7), 1240–1248 (2013). https://doi.org/10.1002/ceat.201300109

    Article  Google Scholar 

  27. Salman, Russell, A., Aman, S., Tomas, J.: Breakage probability of granules during repeated loading. Powder Technol 269, 541–547 (2015). https://doi.org/10.1016/j.powtec.2014.09.044

    Article  Google Scholar 

  28. Mader-Arndt, K., Aman, S., Fuchs, R., Tomas, J.: Contact properties determination of macroscopic fine disperse glass particles via compression tests under cyclic loading/unloading. Adv Powder Technol 28(3), 687–696 (2017). https://doi.org/10.1016/j.apt.2016.10.028

    Article  Google Scholar 

  29. Chen, Z.P., Wassgren, C., Ambrose, R.P.K.: Measured damage resistance of corn and wheat kernels to compression, friction, and repeated impacts. Powder Technol 380, 638–648 (2021). https://doi.org/10.1016/j.powtec.2020.11.012

    Article  Google Scholar 

  30. Wang, C.Y., Ding, X.M., Yin, Z.Y., Peng, Y., Chen, Z.X.: Mechanical characteristics and particle breakage of coral sand under one-dimensional repeated loading. Acta Geotech 17(7), 3117–3130 (2022). https://doi.org/10.1007/s11440-021-01381-9

    Article  Google Scholar 

  31. Zeng, Y., Mao, B.Q., Jia, F.G., Han, Y.L., Li, G.R.: Modelling of grain breakage of in a vertical rice mill based on DEM simulation combining particle replacement model. Biosyst Eng. 215, 32–48 (2022). https://doi.org/10.1016/j.biosystemseng.2021.12.022

    Article  Google Scholar 

  32. Li, Y.M., Chandio, F.A., Ma, Z., Lakhiar, I.A., Sahito, A.R., Ahmad, F., Mari, I.A., Farooq, U., Suleman, M.: Mechanical strength of wheat grain varieties influenced by moisture content and loading rate. Int J Agric. Biol. Eng. 11, 52–57 (2018). https://doi.org/10.25165/j.ijabe.20181104.3737

    Article  Google Scholar 

  33. Russell, A., Mueller, P., Tomas, J.: Quasi-static diametrical compression of characteristic elastic–plastic granules: energetic aspects at contact. Chem Eng Sci 114, 70–84 (2014). https://doi.org/10.1016/j.ces.2014.04.016

    Article  Google Scholar 

  34. Stronge, W.J.: Unraveling paradoxical theories for rigid body collisions. J Appl Mech Trans ASME 58(4), 1049–1055 (1991). https://doi.org/10.1115/1.2897681

    Article  MATH  Google Scholar 

  35. Stronge, W.J.: Impact mechanics. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511626432

    Book  MATH  Google Scholar 

  36. Li, H.C., Zeng, R., Yang, T.Y., Niu, Z.Y.: Experimental study on the impact breakage characteristics of maize kernels. Trans Chin Soc Agric Eng 38(7), 29–37 (2022). https://doi.org/10.11975/j.issn.1002-6819.2022.07.004

    Article  Google Scholar 

  37. Rozenblat, Y., Levy, A., Kalman, H., Tomas, J.: Impact velocity and compression force relationship equivalence function. Powder Technol 235, 756–763 (2013). https://doi.org/10.1016/j.powtec.2012.11.011

    Article  Google Scholar 

  38. Rozenblat, Y., Grant, E., Levy, A., Kalman, H., Tomas, J.: Selection and breakage functions of particles under impact loads. Chem Eng Sci 71, 56–66 (2012). https://doi.org/10.1016/j.ces.2011.12.012

    Article  Google Scholar 

  39. Weibull, W.: A statistical distribution function of wide applicability. J Appl Mech Trans ASME 18, 293–297 (1951). https://doi.org/10.1115/1.4010337

    Article  MATH  Google Scholar 

  40. Vogel, L., Peukert, W.: Breadage behaviour of different materials—construction of mastercurve for the breakage probability. Powder Technol 129(1–3), 101–110 (2003). https://doi.org/10.1016/s0032-5910(02)00217-6

    Article  Google Scholar 

  41. Petukhov, Y., Kalman, H.: Empirical breakage ratio of particles due to impact. Powder Technol 143, 160–169 (2004). https://doi.org/10.1016/j.powtec.2004.04.009

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National key research and development programme (2021YFD130003105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyou Niu or Jing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Cao, Q., Zhao, Z. et al. Breakage probability of feed pellet under repeated compression and impacts. Granular Matter 25, 47 (2023). https://doi.org/10.1007/s10035-023-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01343-w

Keywords

Navigation