Skip to main content
Log in

Continuous bidirectional shear moduli monitoring and micro X-ray CT to evaluate fabric evolution under different stress paths

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2023

This article has been updated

Abstract

Fabric evolution monitoring of sandy specimens during shearing up to critical state is characterized by continuous, bidirectional shear wave velocity measurements along the vertical and horizontal directions (V&H). The specimens are prepared by water sedimentation methods and then subjected to drained compression and extension loading paths. The results exhibit a significant differences between shear wave velocities in two orthogonal directions, and subsequently shear moduli, as shear develops. Not only do the differences between shear wave velocities in V and H directions illuminate a severe and increasing soil anisotropy during the shearing, but the results also signify promising information related to the current fabric and stress state. Comparison between compression and extension results highlight different fabric evolution trends and consequently dissimilar fabric states at the critical state. Considering the conforming results with recent findings on the basis of the discrete element method (DEM), the proposed method can be used as an experimental method facilitating the macroscopic investigation of the effects of fabric anisotropy on the soil elastic response. The fabric anisotropy and its evolution are assessed consecutively using three methods, including quantitative evaluation of shear moduli, proposing a fabric function to account for the soil fabric, and 3D microscopic inspection of Micro-CT slices. The findings of the mentioned methods agree on the importance of fabric anisotropy in shear wave propagation and microscopic variations towards the critical state evolving from the initial state to dissimilar anisotropic states at the critical state under different shear modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Kuwano, R., Jardine, R.J.: On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique. 52, 727–749 (2002). https://doi.org/10.1680/geot.2002.52.10.727

    Article  Google Scholar 

  2. Szilvagyi, Z., Hudacsek, P., Ray, R.P.: Soil shear modulus from resonant column, torsional shear and bender element tests. Int. J. Geomate 10(2), 1822–1827 (2016)

    Google Scholar 

  3. Roesler, S.K.: Anisotropic shear modulus due to stress anisotropy. J. Geotech. Eng. Div. 105, 871–880 (1979). https://doi.org/10.1016/0148-9062(79)90065-2

    Article  Google Scholar 

  4. Ezaoui, A., Benedetto, H.D., Benedetto, D.I.: Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation. Géotechnique. 59, 621–635 (2009). https://doi.org/10.1680/geot.7.00042

    Article  Google Scholar 

  5. Teachavorasinskun, S.: Combined inherent and stress induced anisotropy on the initial shear modulus of sand. Electron. J. Geotech. Eng. 19, 8861–8869 (2014). https://doi.org/10.1155/2020/7841824

    Article  Google Scholar 

  6. Li, B., Zeng, X.: Effects of fabric anisotropy on elastic shear modulus of granular soils. Earthq. Eng. Eng. Vib. 13, 269–278 (2014). https://doi.org/10.1007/s11803-014-0229-x

    Article  Google Scholar 

  7. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N.: Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression. Comput. Geotech. 72, 28–41 (2016). https://doi.org/10.1016/j.compgeo.2015.11.003

    Article  Google Scholar 

  8. Payan, M., Senetakis, K., Khoshghalb, A., Khalili, N.: Effect of gradation and particle shape on small-strain Young’s modulus and Poisson’s ratio of sands. Int. J. Geomech. 17, 04016120 (2017). https://doi.org/10.1061/(asce)gm.1943-5622.0000811

    Article  Google Scholar 

  9. Payan, M., Reza, J.C.: Small strain shear modulus of anisotropically loaded sands. Soil Dyn. Earthq. Eng. 125, 105726 (2019)

    Article  Google Scholar 

  10. Kaviani-Hamedani, F., Fakharian, K., Lashkari, A.: Bidirectional shear wave velocity measurements to track fabric anisotropy evolution of a crushed silica sand during shearing. J. Geotech. Geoenviron. Eng. (2021). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002622

    Article  Google Scholar 

  11. Fakharian, K., Shafiei, M., Hafezan, S.: Investigation of soil setup effects on pile response in clay considering over-consolidation ratio and installation method through physical modeling. Can. Geotech. J. (2022)

  12. Nakakuki, S., Oda, M.: The mechanism of fabric changes during compressional deformation of sand. Soils Found. 12, 1–18 (1972). https://doi.org/10.3208/sandf1972.12.1

    Article  Google Scholar 

  13. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behaviour of sand. Géotechnique. 60, 483–495 (2010). https://doi.org/10.1680/geot.2010.60.6.483

    Article  Google Scholar 

  14. Li, X., Li, X.-S.: Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech. 135, 641–656 (2009)

    Article  Google Scholar 

  15. Cambou, B., Jean, M., Radja, I.F.: Micromechanics of Granular Materials. Wiley, New York (2013)

    Google Scholar 

  16. Kruyt, N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012). https://doi.org/10.1016/j.mechmat.2011.07.008

    Article  Google Scholar 

  17. Wang, R., Fu, P., Zhang, J.-M., Dafalias, Y.F.: Evolution of various fabric tensors for granular media toward the critical state. J. Eng. Mech. 143, 04017117 (2017). https://doi.org/10.1061/(asce)em.1943-7889.0001342

    Article  Google Scholar 

  18. Satake, M., Tsuchikura, T.: Statistics of tensors and its application to a computer-simulation of granular assembly. In: Computational Mechanics--New Frontiers for the New Millennium. pp. 473–478. Elsevier (2001)

  19. Nguyen, N., Magoariec, H., Cambou, B., Danescu, A.: International journal of solids and structures analysis of structure and strain at the meso-scale in 2D granular materials. Int. J. Solids Struct. 46, 3257–3271 (2009). https://doi.org/10.1016/j.ijsolstr.2009.04.019

    Article  MATH  Google Scholar 

  20. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25, 85–97 (1985). https://doi.org/10.3208/sandf1972.25.3_85

    Article  Google Scholar 

  21. Zhao, J., Guo, N.: A new definition on critical state of granular media accounting for fabric anisotropy. In: AIP Conference Proceedings. pp. 229–232 (2013)

  22. Zhao, J., Guo, N., Li, X.S.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique. 63, 695 (2013). https://doi.org/10.1007/978-3-642-32814-5_31

    Article  Google Scholar 

  23. Salimi, M.J., Lashkari, A.: Undrained true triaxial response of initially anisotropic particulate assemblies using CFM-DEM. Comput. Geotech. 124, 103509 (2020). https://doi.org/10.1016/j.compgeo.2020.103509

    Article  Google Scholar 

  24. Li, X.S., Dafalias, Y.F.: Anisotropy at critical state: The role of fabric. J. Eng. Mech. 138, 263–275 (2012). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324

    Article  Google Scholar 

  25. Yan, W.M., Zhang, L.: Fabric and the critical state of idealized granular assemblages subject to biaxial shear. Comput. Geotech. 49, 43–52 (2013). https://doi.org/10.1016/j.compgeo.2012.10.015

    Article  Google Scholar 

  26. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138, 263–275 (2012). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324

    Article  Google Scholar 

  27. Wang, R., Fu, P., Zhang, J.M., Dafalias, Y.F.: Fabric characteristics and processes influencing the liquefaction and re-liquefaction of sand. Soil Dyn. Earthq. Eng. 125, 105720 (2019). https://doi.org/10.1016/j.soildyn.2019.105720

    Article  Google Scholar 

  28. Wang, R., Pinzón, G., Andò, E., Viggiani, G.: Modeling combined fabric evolution in an anisometric granular material driven by particle-scale X-ray measurements. J. Eng. Mech. 148, 4021120 (2022). https://doi.org/10.1061/(ASCE)EM.1943-7889.0002032

    Article  Google Scholar 

  29. Wiebicke, M., Andò, E., Viggiani, G., Herle, I.: Measuring the evolution of contact fabric in shear bands with X-ray tomography. Acta Geotech. 15, 79–93 (2020). https://doi.org/10.1007/s11440-019-00869-9

    Article  Google Scholar 

  30. Fu, P., Dafalias, Y.F.: Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int. J. Numer. Anal. Methods Geomech. 35, 1918–1948 (2011). https://doi.org/10.1002/nag.988

    Article  Google Scholar 

  31. Zhao, C.F., Pinzón, G., Wiebicke, M., Andò, E., Kruyt, N.P., Viggiani, G.: Evolution of fabric anisotropy of granular soils: x-ray tomography measurements and theoretical modelling. Comput. Geotech. (2021). https://doi.org/10.1016/j.compgeo.2021.104046

    Article  Google Scholar 

  32. Mooney, M.A., Finno, R.J., Viggiani, M.G., Mooney, B.M.A., Member, A., Member, R.J.F., Viggiane, M.G.: A unique critical state for sand? J. Geotech. Geoenviron. Eng. 124, 1100–1108 (1998)

    Article  Google Scholar 

  33. Alam, M.F., Haque, A., Ranjith, P.G.: A study of the particle-level fabric and morphology of granular soils under one-dimensional compression using insitu X-ray CT imaging. Materials (Basel). 11, 16–18 (2018). https://doi.org/10.3390/ma11060919

    Article  Google Scholar 

  34. Viggiani, G., Andò, E., Takano, D., Santamarina, J.C.: Laboratory X-ray tomography: a valuable experimental tool for revealing processes in soils. Geotech. Test. J. 38, 61–71 (2015). https://doi.org/10.1520/GTJ20140060

    Article  Google Scholar 

  35. Cheng, Z., Wang, J.: Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography. Soils Found. 58, 1492–1510 (2018). https://doi.org/10.1016/j.sandf.2018.08.008

    Article  Google Scholar 

  36. Zhou, B., Wang, J., Wang, H.: A novel particle tracking method for granular sands based on spherical harmonic rotational invariants. Géotechnique. 68, 1116–1123 (2018). https://doi.org/10.1680/jgeot.17.T.040

    Article  Google Scholar 

  37. Zhao, B., Wang, J.: 3D quantitative shape analysis on form, roundness, and compactness with μ CT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  Google Scholar 

  38. Zhang, C., Zhao, S., Zhao, J., Zhou, X.: Three-dimensional Voronoi analysis of realistic grain packing: an XCT assisted set Voronoi tessellation framework. Powder Technol. 379, 251–264 (2021). https://doi.org/10.1016/j.powtec.2020.10.054

    Article  Google Scholar 

  39. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Non-invasive characterization of particle morphology of natural sands. Soils Found. 52, 712–722 (2012). https://doi.org/10.1016/j.sandf.2012.07.011

    Article  Google Scholar 

  40. Mukunoki, T., Miyata, Y., Mikami, K., Shiota, E.: X-ray CT analysis of pore structure in sand. Solid Earth (2016). https://doi.org/10.5194/se-7-929-2016

  41. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique. 63, 818–829 (2013). https://doi.org/10.1680/geot.11.P.150

    Article  Google Scholar 

  42. Eghbali, A.H., Fakharian, K.: Effect of principal stress rotation in cement-treated sands using triaxial and simple shear tests. Int. J. Civ. Eng. 12, 1–14 (2014)

    Google Scholar 

  43. Lashkari, A., Karimi, A., Fakharian, K., Kaviani-Hamedani, F.: Prediction of undrained behavior of isotropically and anisotropically consolidated firoozkuh sand: Instability and flow liquefaction. Int. J. Geomech. 17, 1–17 (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000958

    Article  Google Scholar 

  44. Borhani, A., Fakharian, K.: Effect of particle shape on dilative behavior and stress path characteristics of chamkhaleh sand in undrained triaxial tests. Int. J. Civ. Eng. (2016). https://doi.org/10.1007/s40999-016-0048-8

    Article  Google Scholar 

  45. Shabani, F., Kaviani-Hamedani, F.: Cyclic response of sandy subsoil layer under traffic-induced principal stress rotations: Application of bidirectional simple shear apparatus. Soil Dyn. Earthq. Eng. 164, 107573 (2023)

    Article  Google Scholar 

  46. Esmailzade, M., Eslami, A., Nabizadeh, A., Aflaki, E.: Effect of cone diameter on determination of penetration resistance using a FCV. Int. J. Civ. Eng. 20, 223–236 (2022). https://doi.org/10.1007/s40999-021-00685-x

    Article  Google Scholar 

  47. Vaid, Y.P., Chern, J.-C.: Effect of static shear on resistance to liquefaction. Soils Found. 23, 47–60 (1983). https://doi.org/10.3208/sandf1972.23.47

    Article  Google Scholar 

  48. Jang, D.-J., Frost, J.D., Park, J.-Y.: Preparation of epoxy impregnated sand coupons for image analysis. Geotech. Test. J. 22, 153–164 (1999). https://doi.org/10.1520/GTJ11274J

    Article  Google Scholar 

  49. Konrad-Zuse-Zentrum: User’s Guide Avizo Software 2019. (2019)

  50. Hardin, B.O.: The nature of stress-strain behavior for soils. In: From Volume I of Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19–21, 1978, Pasadena, California. Sponsored by Geotechnical Engineering Division of ASCE in cooperation with: (1978)

  51. Wang, Y.H., Mok, C.M.: Mechanisms of small-strain shear-modulus anisotropy in soils. J. Geotech. Geoenviron. Eng. 134, 1516–1530 (2008). https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1516)

    Article  Google Scholar 

  52. Fakharian, K., Kaviani-Hamedani, F.: Influence of initial anisotropy, stress path and principal stress rotation on monotonic behavior of clean and mixed sands. In: Key Engineering Materials. pp. 417–430 (2020)

  53. Fakharian, K., Kaviani-Hamedani, F., Imam, S.M.R.: Influences of initial anisotropy and principal stress rotation on the undrained monotonic behavior of a loose silica sand. Can. Geotech. J. (2021). https://doi.org/10.1139/cgj-2020-0791

    Article  Google Scholar 

  54. Verdugo, R., Ishihara, K.: Verdugo: the steady state of sandy soils. Soils Found. 36, 81–91 (1996). https://doi.org/10.3208/sandf.36.2_81

    Article  Google Scholar 

  55. Yang, L.-T., Li, X., Yu, H.-S., Wanatowski, D.: A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotech. 11, 1111–1129 (2016). https://doi.org/10.1007/s11440-015-0423-7

    Article  Google Scholar 

  56. Yimsiri, S., Soga, K.: Micromechanics-based stress–strain behaviour of soils at small strains. Geotechnique 50, 559–571 (2000). https://doi.org/10.1680/geot.2000.50.5.559

    Article  Google Scholar 

  57. Fonseca, J., O’sullivan, C., Coop, M.R.: Experimental investigation into the primary fabric of stress transmitting particles. In: Geomechanics from Micro to Macro. pp. 1019–1024 (2015)

  58. Gu, X., Hu, J., Huang, M.: Anisotropy of elasticity and fabric of granular soils. Granul. Matter. 19, 33 (2017). https://doi.org/10.1007/s10035-017-0717-6

    Article  Google Scholar 

  59. Chang, C.S., Sundaram, S.S., Misra, A.: Initial moduli of particulated mass with frictional contacts. Int. J. Numer. Anal. Methods Geomech. 13, 629–644 (1989)

    Article  MATH  Google Scholar 

  60. Radjai, F., Delenne, J.-Y., Azéma, E., Roux, S.: Fabric evolution and accessible geometrical states in granular materials. Granul. Matter. 14, 259–264 (2012). https://doi.org/10.1007/s10035-012-0321-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contributions of Global Material Testing Manufacturers (Global MTM Inc.) for their sincere technical and financial supports and cooperation over equipment setup and accessories development to enable the testing program of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Fakharian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: " In this article Prof. Ali Lashkari affiliation was incorrect . It has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharian, K., Kaviani-Hamedani, F., Sooraki, A. et al. Continuous bidirectional shear moduli monitoring and micro X-ray CT to evaluate fabric evolution under different stress paths. Granular Matter 25, 52 (2023). https://doi.org/10.1007/s10035-023-01339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01339-6

Keywords

Navigation