Skip to main content

Advertisement

Log in

Characteristics of sand transport fluctuation in near-neutral atmospheric surface layer

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The analysis of the real-time simultaneous measurement data of the sand flux and wind speed fluctuations in the aeolian sand is carried out. Our results show that in the aeolian sand, the stream-wise wind speed fluctuations with a period (T) greater than 30 s has a small contribution to the turbulent kinetic energy, but its dominant sand flux plays an important role in the sand flux fluctuation intensity. Sand flux fluctuations (T > 30 s) with particle size smaller than 200 μm respond well to the stream-wise wind speed fluctuations. Sand flux fluctuations at different height (T > 30 s) have a higher correlation. Sand flux fluctuations with T < 30 s are not only poorly correlated along the height, but also poorly correlated with the sand flux fluctuations of different particle sizes. The results indicate that if the aeolian sand model is to be used to predict the spatial distribution of sand flux along the stream-wise direction, the stream-wise wind speed fluctuation with T > 30 s need to be considered in the model. The results of this paper have important guiding significance for the accurate prediction of dust storms and the design of sand control measures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baas, A.C.W.: Wavelet power spectra of aeolian sand transport by boundary layer turbulence. Geophys. Res. Lett. 33, L05403 (2006)

    Article  ADS  Google Scholar 

  2. Baas, A.C.W., Sherman, D.J.: Formation and behavior of aeolian streamers. J. Geophys. Res. Earth Surface 110, F03011 (2005)

    Article  ADS  Google Scholar 

  3. Bauer, B.O., Davidson-Arnott, R.G.D.: Aeolian particle flux profiles and transport unsteadiness. J. Geophys. Res. Earth Surf. 119(7), 1542–1563 (2014)

    Article  ADS  Google Scholar 

  4. Bo, T.L., Huang, Z.M.: The properties of vertical electric field during haze event in Xi’an, China. Atmos. Pollut. Res. 12, 101109 (2021)

    Article  Google Scholar 

  5. Bo, T.L., Zheng, X.J., Duan, S.Z., et al.: Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles. Eur. Phys. J. E 36(5), 50 (2013)

    Article  Google Scholar 

  6. Durán, O., Parteli, E.J.R., Herrmann, H.J.: A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields. Earth Surf. Proc. Land. 35(13), 1591–1600 (2010)

    Article  ADS  Google Scholar 

  7. Ho, T.D., Valance, A., Dupont, P., et al.: Scaling laws in aeolian sand transport. Phys. Rev. Lett. 106(9), 094501 (2011)

    Article  ADS  Google Scholar 

  8. Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis//Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. R. Soc. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  9. Hutchins, N., Chauhan, K., Marusic, I., Monty, J., Klewicki, J.: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteorol. 145(2), 273–306 (2012)

    Article  ADS  Google Scholar 

  10. Kim, K.C., Adrian, R.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Ishizuka, M., Mikami, M., Yamada, Y., et al.: Threshold friction velocities of saltation sand particles for different soil moisture conditions in the Taklimakan Desert. Sola 5, 184–187 (2009)

    Article  ADS  Google Scholar 

  12. Kok, J.F., Parteli, E.J.R., Michaels, T.I., et al.: The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012)

    Article  ADS  Google Scholar 

  13. Kok, J.F., Renno, N.O.: A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res. 114, D17204 (2009)

    Article  ADS  Google Scholar 

  14. Langford, R.P., Gill, T.E., Jones, S.B.: Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA. Sed. Geol. 333, 184–197 (2016)

    Article  Google Scholar 

  15. Li, B.L., Neuman, C.M.K.: A wind tunnel study of aeolian sediment transport response to unsteady winds. Geomorphology 214, 261–269 (2014)

    Article  ADS  Google Scholar 

  16. Liu, D., Ishizuka, M., Mikami, M., et al.: Turbulent characteristics of saltation and uncertainty of saltation model parameters. Atmos. Chem. Phys. 18(10), 7595–7606 (2018)

    Article  ADS  Google Scholar 

  17. Martin, R.L., Kok, J.F., Hugenholtz, C.H., et al.: High-frequency measurements of aeolian saltation flux: Field-based methodology and applications. Aeol. Res. 30, 97–114 (2018)

    Article  Google Scholar 

  18. Mikami, M., Yamada, Y., Ishizuka, M. et al.: Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter. J. Geophys. Res. Atmos. 110, D18S02 (2005)

    Article  ADS  Google Scholar 

  19. Pfeifer, S., Schönfeldt, H.J.: The response of saltation to wind speed fluctuations. Earth Surface Process. Landf. 37(10), 1056–1064 (2012)

    Article  ADS  Google Scholar 

  20. Saber, A., Lundström, T.S., Hellström, J.G.I.: Turbulent modulation in particulate flow: a review of critical variables. Engineering 7(10), 597 (2015)

    Article  Google Scholar 

  21. Sauermann, G., Kroy, K., Herrmann, H.J.: Continuum saltation model for sand dunes. Phys. Rev. E 64(3), 031305 (2001)

    Article  ADS  Google Scholar 

  22. Sherman, D.J., Li, B.L., Ellis, J.T., Swann, C.: Intermittent aeolian saltation: a protocol for quantification. Geogr. Re. 108(2), 296–314 (2018)

    Article  Google Scholar 

  23. Wang, G., Zheng, X.: Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464–489 (2016)

    Article  ADS  Google Scholar 

  24. Yamada, Y., Mikami, M., Nagashima, H.: Dust particle measuring system for streamwise dust flux. J. Arid Land Stud. 11(4), 229–234 (2002)

    Google Scholar 

  25. Zhang, H., Bo, T.L., Zheng, X.: Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations. Earth Planet. Sci. Lett. 461, 141–150 (2017)

    Article  ADS  Google Scholar 

  26. Zhang, K., Qu, J., Han, Q., et al.: Wind energy environments and aeolian sand characteristics along the Qinghai-Tibet Railway, China. Sediment. Geol. 273, 91–96 (2012)

    Article  ADS  Google Scholar 

  27. Zheng, X.J., Bo, T.L.: Representation model of wind velocity fluctuations and saltation transport in aeolian sand flow. J. Wind Eng. Ind. Aerodyn. 220, 104846 (2022)

    Article  Google Scholar 

  28. Zheng, X.J., Bo, T.L., Zhu, W.: A scale-coupled method for simulation of the formation and evolution of aeolian dune field. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 387–396 (2009)

    Article  Google Scholar 

  29. Zhou, Y.H., Guo, X., Zheng, X.J.: Experimental measurement of wind-sand flux and sand transport for naturally mixed sands. Phys. Rev. E 66(2), 021305 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ningxia Hui Autonomous Region Key Research and Development Project (No. 2021BEG03029 and 2020BEB04015), and National Natural Science Foundation of China (No. 12062023), as well as the helpful comments from referees which lead to a significant improvement of our work, the authors express their sincere appreciation to the support. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Li Bo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, TL., He, Q. Characteristics of sand transport fluctuation in near-neutral atmospheric surface layer. Granular Matter 25, 13 (2023). https://doi.org/10.1007/s10035-022-01301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01301-y

Keywords

Navigation