Skip to main content

Advertisement

Log in

On the erosion of cohesive granular soils by a submerged jet: a numerical approach

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents an erosion interpretation of cohesive granular materials stressed by an impinging jet based on the results of a micromechanical simulation model. The numerical techniques are briefly described, relying on a two-dimensional Lattice Boltzmann Method coupled with a Discrete Element Methods including a simple model of solid intergranular cohesion. These are then used to perform a parametric study of a planar jet in the laminar regime impinging the surface of granular samples with different degrees of cohesive strength. The results show the pertinence of using a generalized form of the Shields criterion for the quantification of the erosion threshold, which is valid for cohesionless samples, through empirical calibration, and also for cohesive ones. Furthermore, the scouring kinetics are analysed here from the perspective of a self-similar expansion of the eroded crater leading to the identification of a characteristic erosion time and the quantification of the classical erosion coefficient. However, the presented results also challenge the postulate of a local erosion law including erodibility parameters as intrinsic material properties. The paper then reviews the main limitations of the simulation and current interpretation models, and discusses the potential causes for the observed discrepancies, questioning the pertinence of using time-averaged macroscopic relations to correctly describe soil erosion. The paper concludes addressing this question with a complementary study of the presented simulations re-assessed at the particle-scale. The resulting local critical shear stress of single grains reveals a very wide dispersion of the data but nevertheless appears to confirm the general macroscopic trend derived for the cohesionless samples, while the introduction of cohesion implies a significant but systematic quantitative deviation between the microscopic and macroscopic estimates. Nevertheless, the micro data still shows consistently that the critical shear stress does actually vary approximately in linear proportion of the adhesive force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Albertson, M.L., Dai, Y.B., Jensen, R.A., Rouse, H.: Diffusion of submerged jets. Trans. ASCE 115, 639–697 (1950)

    Google Scholar 

  2. Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the Discrete Element Method (DEM). Chem. Eng. Sci. 64, 5268–5275 (2009). https://doi.org/10.1016/j.ces.2009.09.001

    Article  Google Scholar 

  3. Ariathurai, R., Arulanandan, K.: Erosion and deposition of cohesive soils. J. Hydraul. Div. 104(2), 279–283 (1978). https://doi.org/10.1061/JYCEAJ.0001165

    Article  Google Scholar 

  4. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005). https://doi.org/10.1103/PhysRevE.71.061302

    Article  ADS  Google Scholar 

  5. Badr, S., Gauthier, G., Gondret, P.: Erosion threshold of a liquid immersed granular bed by an impinging plane liquid jet. Phys. Fluids 26(2), 023302 (2014). https://doi.org/10.1063/1.4863989

    Article  ADS  Google Scholar 

  6. Beltaos, S., Rajaratnam, N.: Impinging circular turbulent jets. J. Hydraul. Div. 100(10), 1313–1328 (1974)

    Article  Google Scholar 

  7. Beltaos, S., Rajaratnam, N.: Impingement of axisymmetric developing jets. J. Hydraul. Res. 15(4), 311–326 (1977). https://doi.org/10.1080/00221687709499637

    Article  Google Scholar 

  8. Benahmed, N., Bonelli, S.: Investigating concentrated leak erosion behaviour of cohesive soils by performing Hole Erosion Tests. Eur. J. Environ. Civ. Eng. 16(1), 43–58 (2012). https://doi.org/10.1080/19648189.2012.667667

    Article  Google Scholar 

  9. Benseghier, Z.: Numerical modeling of fluid flow erosion of a cohesive granular material. Ph.D. thesis (2019). http://www.theses.fr/2019AIXM0579. Engineering Sciences. Fluid mechanics and physics. Aix-Marseille University (2019)

  10. Benseghier, Z., Cuéllar, P., Luu, L.H., Bonelli, S., Philippe, P.: A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems. Comput. Geotech. 120, 103404 (2020). https://doi.org/10.1016/j.compgeo.2019.103404

    Article  Google Scholar 

  11. Benseghier, Z., Cuéllar, P., Luu, L.H., Delenne, J.Y., Bonelli, S., Philippe, P.: Relevance of free jet model for soil erosion by impinging jets. J. Hydraul. Eng. 146(1), 04019047 (2020). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001652

    Article  Google Scholar 

  12. Bickley, W.: The Plane Jet. Lond. Edinb. Dublin Philos. Mag. J. Sci. 23, 727–731 (1937). https://doi.org/10.1080/14786443708561847

    Article  MATH  Google Scholar 

  13. Bonelli, S.: Erosion of Geomaterials. Wiley-ISTE, New York (2012)

    Book  Google Scholar 

  14. Bonelli, S.: Erosion in Geomechanics Applied to Dams and Levees. Wiley-ISTE, New York (2013)

    Book  Google Scholar 

  15. Bonelli, S., Brivois, O.: The scaling law in the hole erosion test with a constant pressure drop. Int. J. Numer. Anal. Methods Geomech. 32(13), 1573–1595 (2008). https://doi.org/10.1002/nag.683

    Article  MATH  Google Scholar 

  16. Briaud, J.L., Ting, F.C., Chen, H.C., Cao, Y., Han, S.W., Kwak, K.W.: Erosion Function Apparatus for scour rate predictions. J. Geotech. Geoenviron. Eng. 127(2), 105–113 (2001). https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)

    Article  Google Scholar 

  17. Brunier-Coulin, F., Cuéllar, P., Philippe, P.: Erosion onset of a cohesionless granular medium by an immersed impinging round jet. Phys. Rev. Fluids 2, 034302 (2017). https://doi.org/10.1103/PhysRevFluids.2.034302

    Article  ADS  Google Scholar 

  18. Brunier-Coulin, F., Cuéllar, P., Philippe, P.: Generalized Shields criterion for weakly cohesive granular materials. Phys. Rev. Fluids 5, 034308 (2020). https://doi.org/10.1103/PhysRevFluids.5.034308

    Article  ADS  Google Scholar 

  19. Buffington, J.M.: The legend of A. F. Shields. J. Hydraul. Eng. 125(4), 376–387 (1999). https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(376)

    Article  Google Scholar 

  20. Cao, Z., Pender, G., Meng, J.: Explicit formulation of the Shields diagram for incipient motion of sediment. J. Hydraul. Eng. 132(10), 1097–1099 (2006). https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1097)

    Article  Google Scholar 

  21. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263–376 (2005). https://doi.org/10.1080/17461390500402657

    Article  ADS  Google Scholar 

  22. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  23. Chen, D., Wang, Y., Melville, B., Huang, H., Zhang, W.: Unified formula for critical shear stress for erosion of sand, mud, and sand-mud mixtures. J. Hydraul. Eng. 144(8), 4018046 (2018). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001489

    Article  Google Scholar 

  24. Chen, S., Martínez, D., Mei, R.: On boundary conditions in Lattice Boltzmann Methods. Phys. Fluids 8(9), 2527–2536 (1996). https://doi.org/10.1063/1.869035

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Choo, H., Zhao, Q., Burns, S.E., Sturm, T.W., Hong, S.H.: Laboratory and theoretical evaluation of impact of packing density, particle shape, and uniformity coefficient on erodibility of coarse-grained soil particles. Earth Surf. Process. Landf. 45(7), 1499–1509 (2020)

    Article  ADS  Google Scholar 

  26. Clark, A.H., Behringer, R.P.: Jet-induced 2-D crater formation with horizontal symmetry breaking. Granul. Matter. 16, 433–440 (2014)

    Article  Google Scholar 

  27. Claudin, P., Andreotti, B.: A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252(1–2), 30–44 (2006). https://doi.org/10.1016/j.epsl.2006.09.004

    Article  ADS  Google Scholar 

  28. Coleman, S.E., Nikora, V.I.: A unifying framework for particle entrainment. Water Resour. Res. 44(4), W04415 (2008). https://doi.org/10.1029/2007WR006363

    Article  ADS  Google Scholar 

  29. Cuéllar, P., Benseghier, Z., Luu, L.H., Bonelli, S., Delenne, J.Y., Radjaï, F., Philippe, P.: Numerical insight into the micromechanics of jet erosion of a cohesive granular material. EPJ Web Conf. 140, 15017 (2017). https://doi.org/10.1051/epjconf/201714015017

    Article  Google Scholar 

  30. Cuellar, P., Luu, L.H., Philippe, P., Brunier-Coulin, F., Benahmed, N., Bonelli, S., Delenne, J.Y., Ngoma, J.: Micromechanical features of jet erosion—a numerical perspective. In: 8th International Conference on Scour and Erosion (2016)

  31. Cuéllar, P., Philippe, P., Bonelli, S., Benahmed, N., Brunier-Coulin, F., Ngoma, J., Delenne, J.Y., Radjai, F.: Micromechanical analysis of the surface erosion of a cohesive soil by means of a coupled LBM-DEM model. In: 4th International Conference on Particle-based Methods (PARTICLES 2015) p. 1121 (2015)

  32. Daly, E.R., Fox, G.A., Al-Madhhachi, A.T., Miller, R.B.: A scour depth approach for deriving erodibility parameters from Jet Erosion Tests. Trans. ASABE 56(6), 1343–1351 (2013). https://doi.org/10.13031/trans.56.10350

    Article  Google Scholar 

  33. Delenne, J.Y., El Youssoufi, M.S., Cherblanc, F., Bénet, J.C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28(15), 1577–1594 (2004). https://doi.org/10.1002/nag.401

    Article  MATH  Google Scholar 

  34. Dey, S.: Entrainment threshold of loose boundary streams. Exp. Methods Hydraul. Res. Ser. Geoplanet Earth Planet. Sci. 1, 29–48 (2011). https://doi.org/10.1007/978-3-642-17475-9_2

    Article  Google Scholar 

  35. Dong, C., Yu, G., Zhang, H., Zhang, M.: Scouring by submerged steady water jet vertically impinging on a cohesive bed. Ocean Eng. 196, 106781 (2020). https://doi.org/10.1016/j.oceaneng.2019.106781

    Article  Google Scholar 

  36. Fan, J., Luu, L.H., Noury, G., Philippe, P.: DEM-LBM numerical modeling of submerged cohesive granular discharges. Granular Matter. 22, 66 (2020)

    Article  Google Scholar 

  37. Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37(5), 1000–1024 (2000). https://doi.org/10.1139/t00-030

    Article  Google Scholar 

  38. Fournier, A.: Soil Erosion: Causes, Processes, and Effects. Environmental science, engineering and technology series. Nova Science Publishers (2011)

  39. Ghaneeizad, S.M., Atkinson, J.F., Bennett, S.J.: Effect of flow confinement on the hydrodynamics of circular impinging jets: implications for erosion assessment. Environ. Fluid Mech. 15(1), 1–25 (2015). https://doi.org/10.1007/s10652-014-9354-3

    Article  Google Scholar 

  40. Grabowski, R.C., Droppo, I.G., Wharton, G.: Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci. Rev. 105(3–4), 101–120 (2011). https://doi.org/10.1016/j.earscirev.2011.01.008

    Article  ADS  Google Scholar 

  41. Guo, J.: Discussion of “The Albert Shields Story’’ by Junke Guo. J. Hydraul. Eng. 123(7), 666–666 (1997). https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(666.x)

    Article  Google Scholar 

  42. Haddadchi, A., Rose, C.W., Olley, J.M., Brooks, A.P., McMahon, J., Pietsch, T.: An alternative method for interpreting Jet Erosion Test (JET) data: part 1. Application. Earth Surf. Process. Landf. 43, 743–754 (2018). https://doi.org/10.1002/esp.4270

    Article  ADS  Google Scholar 

  43. Hanson, G., Cook, K.: Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Appl. Eng Agric. 20(4), 455 (2004)

    Article  Google Scholar 

  44. Hanson, G.J., Robinson, K.M., Temple, D.M.: Pressure and stress distributions due to a submerged impinging jet. In: Hydraulic Engineering, pp. 525–530. ASCE (1990)

  45. Khanal, A., Klavon, K.R., Fox, G.A., Daly, E.R.: Comparison of linear and nonlinear models for cohesive sediment detachment: rill erosion, hole erosion test, and streambank erosion studies. J. Hydraul. Eng. (2016). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001147

    Article  Google Scholar 

  46. Knapen, A., Poesen, J., Govers, G., Gyssels, G., Nachtergaele, J.: Resistance of soils to concentrated flow erosion: a review. Earth-Sci. Rev. 80(1–2), 75–109 (2007). https://doi.org/10.1016/j.earscirev.2006.08.001

    Article  ADS  Google Scholar 

  47. Kuang, S., LaMarche, C., Curtis, J., Yu, A.: Discrete particle simulation of jet-induced cratering of a granular bed. Powder Technol. 239, 319–336 (2013). https://doi.org/10.1016/j.powtec.2013.02.017

    Article  Google Scholar 

  48. Latt, J., Chopard, B., Malaspinas, O., Deville, M., Michler, A.: Straight velocity boundaries in the Lattice Boltzmann Method. Phys. Rev. E 77, 056703 (2008). https://doi.org/10.1103/PhysRevE.77.056703

    Article  ADS  Google Scholar 

  49. Lick, W., Jin, L., Gailani, J.: Initiation of movement of quartz particles. J. Hydraul. Eng. 130(8), 755–761 (2004). https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(755)

    Article  Google Scholar 

  50. Lominé, F., Scholtès, L., Sibille, L., Poullain, P.: Modeling of fluid-solid interaction in granular media with coupled Lattice Boltzmann/Discrete Element Methods: Application to piping erosion. Int. J. Numer. Anal. Methods Geomech. 37, 577–596 (2013). https://doi.org/10.1002/nag.1109

    Article  Google Scholar 

  51. Mahalder, B., Schwartz, J.S., Palomino, A.M., Zirkle, J.: Estimating erodibility parameters for streambanks with cohesive soils using the mini Jet Test device: a comparison of field and computational methods. Water 10, 304 (2018). https://doi.org/10.3390/w10030304

    Article  Google Scholar 

  52. Marot, D., Regazzoni, P.L., Wahl, T.: Energy-based method for providing soil surface erodibility rankings. J. Geotech. Geoenviron. Eng. 137(12), 1290–1293 (2011). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000538

    Article  Google Scholar 

  53. Mercier, F., Bonelli, S., Pinettes, P., Golay, F., Anselmet, F., Philippe, P.: Comparison of computational fluid dynamic simulations with experimental jet erosion tests results. J. Hydraul. Eng. 140(5), 04014006 (2014). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000829

    Article  Google Scholar 

  54. Mercier, F., Golay, F., Bonelli, S., Anselmet, F., Borghi, R., Philippe, P.: 2D axisymmetrical numerical modelling of the erosion of a cohesive soil by a submerged turbulent impinging jet. Eur. J. Mech. B/Fluids 45, 36–50 (2014). https://doi.org/10.1016/j.euromechflu.2013.12.001

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Nearing, M.A., Norton, L.D., Bulgakov, D.A., Larionov, G.A., West, L.T., Dontsova, K.M.: Hydraulics and erosion in eroding rills. Water Resour. Res. 33(4), 865–876 (1997)

    Article  ADS  Google Scholar 

  56. Ngoma, J., Philippe, P., Bonelli, S., Radjaï, F., Delenne, J.Y.: Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of Discrete Element and Lattice Boltzmann Methods. Phys. Rev. E 97, 052902 (2018). https://doi.org/10.1103/PhysRevE.97.052902

    Article  ADS  Google Scholar 

  57. Nguyen, V.N., Courivaud, J.R., Pinettes, P., Souli, H., Fleureau, J.M.: Using an improved Jet-Erosion Test to study the influence of soil parameters on the erosion of a silty soil. J. Hydraul. Eng. 143(8), 4017018 (2017). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001305

    Article  Google Scholar 

  58. Partheniades, E.: Erosion and deposition of cohesive soils. J. Hydraul. Div. 91(1), 105–139 (1965)

    Article  Google Scholar 

  59. Phares, D.J., Smedley, G.T., Flagan, R.C.: The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351–375 (2000). https://doi.org/10.1017/S002211200000121X

    Article  MATH  ADS  Google Scholar 

  60. Pierrat, P., Caram, H.S.: Tensile strength of wet granular materials. Powder Technol. 91(2), 83–93 (1997). https://doi.org/10.1016/S0032-5910(96)03179-8

    Article  Google Scholar 

  61. Richards, K.S., Reddy, K.R.: Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 66(4), 381–402 (2007). https://doi.org/10.1007/s10064-007-0095-0

    Article  Google Scholar 

  62. Righetti, M., Lucarelli, C.: May the Shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res Oceans (2007). https://doi.org/10.1029/2006JC003669

    Article  Google Scholar 

  63. Rose, C.W., Olley, J.M., Haddadchi, A., Brooks, A.P., McMahon, J.: An alternative method for interpreting Jet Erosion Test (JET) data: part 1. Theory. Earth Surf. Process. Landf. 43, 735–742 (2018). https://doi.org/10.1002/esp.4269

    Article  ADS  Google Scholar 

  64. Roy, S., Luding, S., Weinhart, T.: A general(ized) local rheology for wet granular materials. New J. Phys. 19(4), 043014 (2017). https://doi.org/10.1088/1367-2630/aa6141

    Article  ADS  Google Scholar 

  65. Schlichting, H.: Boundary Layer Theory, 4th edn. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  66. Sibille, L., Lominé, F., Poullain, P., Sail, Y., Marot, D.: Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrol. Process. 29(9), 2149–2163 (2015). https://doi.org/10.1002/hyp.10351

    Article  ADS  Google Scholar 

  67. Ternat, F., Boyer, P., Anselmet, F., Amielh, M.: Erosion threshold of saturated natural cohesive sediments: modeling and experiments. Water Resour. Res. (2008). https://doi.org/10.1029/2007WR006537

    Article  Google Scholar 

  68. Tolhurst, T.J., Black, K.S., Paterson, D.M.: Muddy sediment erosion: insights from field studies. J. Hydraul. Eng. 135(2), 73–87 (2009)

    Article  Google Scholar 

  69. Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., da Silva, J.R.M., Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850), 626–629 (2007). https://doi.org/10.1126/science.1145724

    Article  ADS  Google Scholar 

  70. Vessaire, J., Varas, G., Joubaud, S., Volk, R., Bourgoin, M., Vidal, V.: Stability of a liquid jet impinging on confined saturated sand. Phys. Rev. Lett. 214, 224502 (2020). https://doi.org/10.1103/PhysRevLett.124.224502

    Article  ADS  Google Scholar 

  71. Winterwerp, J.C., Van Kesteren, W.G.M.: Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment, vol. 56. Elsevier, Amsterdam (2004)

    Google Scholar 

  72. Zou, Q., He, X.: On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997). https://doi.org/10.1063/1.869307

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

Z. Benseghier is grateful for the financial support provided by the “Région Sud, Provence-Alpes-Côte d’Azur”. The authors would also like to thank J.-Y. Delenne, F. Lominé, and J. Duriez for fruitful discussions. Centre de Calcul Intensif d’Aix-Marseille is acknowledged for granting access to its high performance computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Philippe.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence the position presented in the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (pdf 679 kb)

Supplementary material 2 (mov 3143 kb)

Supplementary material 3 (mov 148 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benseghier, Z., Luu, LH., Cuéllar, P. et al. On the erosion of cohesive granular soils by a submerged jet: a numerical approach. Granular Matter 25, 8 (2023). https://doi.org/10.1007/s10035-022-01289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01289-5

Keywords