Abstract
This paper presents an erosion interpretation of cohesive granular materials stressed by an impinging jet based on the results of a micromechanical simulation model. The numerical techniques are briefly described, relying on a two-dimensional Lattice Boltzmann Method coupled with a Discrete Element Methods including a simple model of solid intergranular cohesion. These are then used to perform a parametric study of a planar jet in the laminar regime impinging the surface of granular samples with different degrees of cohesive strength. The results show the pertinence of using a generalized form of the Shields criterion for the quantification of the erosion threshold, which is valid for cohesionless samples, through empirical calibration, and also for cohesive ones. Furthermore, the scouring kinetics are analysed here from the perspective of a self-similar expansion of the eroded crater leading to the identification of a characteristic erosion time and the quantification of the classical erosion coefficient. However, the presented results also challenge the postulate of a local erosion law including erodibility parameters as intrinsic material properties. The paper then reviews the main limitations of the simulation and current interpretation models, and discusses the potential causes for the observed discrepancies, questioning the pertinence of using time-averaged macroscopic relations to correctly describe soil erosion. The paper concludes addressing this question with a complementary study of the presented simulations re-assessed at the particle-scale. The resulting local critical shear stress of single grains reveals a very wide dispersion of the data but nevertheless appears to confirm the general macroscopic trend derived for the cohesionless samples, while the introduction of cohesion implies a significant but systematic quantitative deviation between the microscopic and macroscopic estimates. Nevertheless, the micro data still shows consistently that the critical shear stress does actually vary approximately in linear proportion of the adhesive force.
















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Albertson, M.L., Dai, Y.B., Jensen, R.A., Rouse, H.: Diffusion of submerged jets. Trans. ASCE 115, 639–697 (1950)
Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the Discrete Element Method (DEM). Chem. Eng. Sci. 64, 5268–5275 (2009). https://doi.org/10.1016/j.ces.2009.09.001
Ariathurai, R., Arulanandan, K.: Erosion and deposition of cohesive soils. J. Hydraul. Div. 104(2), 279–283 (1978). https://doi.org/10.1061/JYCEAJ.0001165
Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005). https://doi.org/10.1103/PhysRevE.71.061302
Badr, S., Gauthier, G., Gondret, P.: Erosion threshold of a liquid immersed granular bed by an impinging plane liquid jet. Phys. Fluids 26(2), 023302 (2014). https://doi.org/10.1063/1.4863989
Beltaos, S., Rajaratnam, N.: Impinging circular turbulent jets. J. Hydraul. Div. 100(10), 1313–1328 (1974)
Beltaos, S., Rajaratnam, N.: Impingement of axisymmetric developing jets. J. Hydraul. Res. 15(4), 311–326 (1977). https://doi.org/10.1080/00221687709499637
Benahmed, N., Bonelli, S.: Investigating concentrated leak erosion behaviour of cohesive soils by performing Hole Erosion Tests. Eur. J. Environ. Civ. Eng. 16(1), 43–58 (2012). https://doi.org/10.1080/19648189.2012.667667
Benseghier, Z.: Numerical modeling of fluid flow erosion of a cohesive granular material. Ph.D. thesis (2019). http://www.theses.fr/2019AIXM0579. Engineering Sciences. Fluid mechanics and physics. Aix-Marseille University (2019)
Benseghier, Z., Cuéllar, P., Luu, L.H., Bonelli, S., Philippe, P.: A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems. Comput. Geotech. 120, 103404 (2020). https://doi.org/10.1016/j.compgeo.2019.103404
Benseghier, Z., Cuéllar, P., Luu, L.H., Delenne, J.Y., Bonelli, S., Philippe, P.: Relevance of free jet model for soil erosion by impinging jets. J. Hydraul. Eng. 146(1), 04019047 (2020). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001652
Bickley, W.: The Plane Jet. Lond. Edinb. Dublin Philos. Mag. J. Sci. 23, 727–731 (1937). https://doi.org/10.1080/14786443708561847
Bonelli, S.: Erosion of Geomaterials. Wiley-ISTE, New York (2012)
Bonelli, S.: Erosion in Geomechanics Applied to Dams and Levees. Wiley-ISTE, New York (2013)
Bonelli, S., Brivois, O.: The scaling law in the hole erosion test with a constant pressure drop. Int. J. Numer. Anal. Methods Geomech. 32(13), 1573–1595 (2008). https://doi.org/10.1002/nag.683
Briaud, J.L., Ting, F.C., Chen, H.C., Cao, Y., Han, S.W., Kwak, K.W.: Erosion Function Apparatus for scour rate predictions. J. Geotech. Geoenviron. Eng. 127(2), 105–113 (2001). https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
Brunier-Coulin, F., Cuéllar, P., Philippe, P.: Erosion onset of a cohesionless granular medium by an immersed impinging round jet. Phys. Rev. Fluids 2, 034302 (2017). https://doi.org/10.1103/PhysRevFluids.2.034302
Brunier-Coulin, F., Cuéllar, P., Philippe, P.: Generalized Shields criterion for weakly cohesive granular materials. Phys. Rev. Fluids 5, 034308 (2020). https://doi.org/10.1103/PhysRevFluids.5.034308
Buffington, J.M.: The legend of A. F. Shields. J. Hydraul. Eng. 125(4), 376–387 (1999). https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(376)
Cao, Z., Pender, G., Meng, J.: Explicit formulation of the Shields diagram for incipient motion of sediment. J. Hydraul. Eng. 132(10), 1097–1099 (2006). https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1097)
Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263–376 (2005). https://doi.org/10.1080/17461390500402657
Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)
Chen, D., Wang, Y., Melville, B., Huang, H., Zhang, W.: Unified formula for critical shear stress for erosion of sand, mud, and sand-mud mixtures. J. Hydraul. Eng. 144(8), 4018046 (2018). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001489
Chen, S., Martínez, D., Mei, R.: On boundary conditions in Lattice Boltzmann Methods. Phys. Fluids 8(9), 2527–2536 (1996). https://doi.org/10.1063/1.869035
Choo, H., Zhao, Q., Burns, S.E., Sturm, T.W., Hong, S.H.: Laboratory and theoretical evaluation of impact of packing density, particle shape, and uniformity coefficient on erodibility of coarse-grained soil particles. Earth Surf. Process. Landf. 45(7), 1499–1509 (2020)
Clark, A.H., Behringer, R.P.: Jet-induced 2-D crater formation with horizontal symmetry breaking. Granul. Matter. 16, 433–440 (2014)
Claudin, P., Andreotti, B.: A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252(1–2), 30–44 (2006). https://doi.org/10.1016/j.epsl.2006.09.004
Coleman, S.E., Nikora, V.I.: A unifying framework for particle entrainment. Water Resour. Res. 44(4), W04415 (2008). https://doi.org/10.1029/2007WR006363
Cuéllar, P., Benseghier, Z., Luu, L.H., Bonelli, S., Delenne, J.Y., Radjaï, F., Philippe, P.: Numerical insight into the micromechanics of jet erosion of a cohesive granular material. EPJ Web Conf. 140, 15017 (2017). https://doi.org/10.1051/epjconf/201714015017
Cuellar, P., Luu, L.H., Philippe, P., Brunier-Coulin, F., Benahmed, N., Bonelli, S., Delenne, J.Y., Ngoma, J.: Micromechanical features of jet erosion—a numerical perspective. In: 8th International Conference on Scour and Erosion (2016)
Cuéllar, P., Philippe, P., Bonelli, S., Benahmed, N., Brunier-Coulin, F., Ngoma, J., Delenne, J.Y., Radjai, F.: Micromechanical analysis of the surface erosion of a cohesive soil by means of a coupled LBM-DEM model. In: 4th International Conference on Particle-based Methods (PARTICLES 2015) p. 1121 (2015)
Daly, E.R., Fox, G.A., Al-Madhhachi, A.T., Miller, R.B.: A scour depth approach for deriving erodibility parameters from Jet Erosion Tests. Trans. ASABE 56(6), 1343–1351 (2013). https://doi.org/10.13031/trans.56.10350
Delenne, J.Y., El Youssoufi, M.S., Cherblanc, F., Bénet, J.C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28(15), 1577–1594 (2004). https://doi.org/10.1002/nag.401
Dey, S.: Entrainment threshold of loose boundary streams. Exp. Methods Hydraul. Res. Ser. Geoplanet Earth Planet. Sci. 1, 29–48 (2011). https://doi.org/10.1007/978-3-642-17475-9_2
Dong, C., Yu, G., Zhang, H., Zhang, M.: Scouring by submerged steady water jet vertically impinging on a cohesive bed. Ocean Eng. 196, 106781 (2020). https://doi.org/10.1016/j.oceaneng.2019.106781
Fan, J., Luu, L.H., Noury, G., Philippe, P.: DEM-LBM numerical modeling of submerged cohesive granular discharges. Granular Matter. 22, 66 (2020)
Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37(5), 1000–1024 (2000). https://doi.org/10.1139/t00-030
Fournier, A.: Soil Erosion: Causes, Processes, and Effects. Environmental science, engineering and technology series. Nova Science Publishers (2011)
Ghaneeizad, S.M., Atkinson, J.F., Bennett, S.J.: Effect of flow confinement on the hydrodynamics of circular impinging jets: implications for erosion assessment. Environ. Fluid Mech. 15(1), 1–25 (2015). https://doi.org/10.1007/s10652-014-9354-3
Grabowski, R.C., Droppo, I.G., Wharton, G.: Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci. Rev. 105(3–4), 101–120 (2011). https://doi.org/10.1016/j.earscirev.2011.01.008
Guo, J.: Discussion of “The Albert Shields Story’’ by Junke Guo. J. Hydraul. Eng. 123(7), 666–666 (1997). https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(666.x)
Haddadchi, A., Rose, C.W., Olley, J.M., Brooks, A.P., McMahon, J., Pietsch, T.: An alternative method for interpreting Jet Erosion Test (JET) data: part 1. Application. Earth Surf. Process. Landf. 43, 743–754 (2018). https://doi.org/10.1002/esp.4270
Hanson, G., Cook, K.: Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Appl. Eng Agric. 20(4), 455 (2004)
Hanson, G.J., Robinson, K.M., Temple, D.M.: Pressure and stress distributions due to a submerged impinging jet. In: Hydraulic Engineering, pp. 525–530. ASCE (1990)
Khanal, A., Klavon, K.R., Fox, G.A., Daly, E.R.: Comparison of linear and nonlinear models for cohesive sediment detachment: rill erosion, hole erosion test, and streambank erosion studies. J. Hydraul. Eng. (2016). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001147
Knapen, A., Poesen, J., Govers, G., Gyssels, G., Nachtergaele, J.: Resistance of soils to concentrated flow erosion: a review. Earth-Sci. Rev. 80(1–2), 75–109 (2007). https://doi.org/10.1016/j.earscirev.2006.08.001
Kuang, S., LaMarche, C., Curtis, J., Yu, A.: Discrete particle simulation of jet-induced cratering of a granular bed. Powder Technol. 239, 319–336 (2013). https://doi.org/10.1016/j.powtec.2013.02.017
Latt, J., Chopard, B., Malaspinas, O., Deville, M., Michler, A.: Straight velocity boundaries in the Lattice Boltzmann Method. Phys. Rev. E 77, 056703 (2008). https://doi.org/10.1103/PhysRevE.77.056703
Lick, W., Jin, L., Gailani, J.: Initiation of movement of quartz particles. J. Hydraul. Eng. 130(8), 755–761 (2004). https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(755)
Lominé, F., Scholtès, L., Sibille, L., Poullain, P.: Modeling of fluid-solid interaction in granular media with coupled Lattice Boltzmann/Discrete Element Methods: Application to piping erosion. Int. J. Numer. Anal. Methods Geomech. 37, 577–596 (2013). https://doi.org/10.1002/nag.1109
Mahalder, B., Schwartz, J.S., Palomino, A.M., Zirkle, J.: Estimating erodibility parameters for streambanks with cohesive soils using the mini Jet Test device: a comparison of field and computational methods. Water 10, 304 (2018). https://doi.org/10.3390/w10030304
Marot, D., Regazzoni, P.L., Wahl, T.: Energy-based method for providing soil surface erodibility rankings. J. Geotech. Geoenviron. Eng. 137(12), 1290–1293 (2011). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000538
Mercier, F., Bonelli, S., Pinettes, P., Golay, F., Anselmet, F., Philippe, P.: Comparison of computational fluid dynamic simulations with experimental jet erosion tests results. J. Hydraul. Eng. 140(5), 04014006 (2014). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000829
Mercier, F., Golay, F., Bonelli, S., Anselmet, F., Borghi, R., Philippe, P.: 2D axisymmetrical numerical modelling of the erosion of a cohesive soil by a submerged turbulent impinging jet. Eur. J. Mech. B/Fluids 45, 36–50 (2014). https://doi.org/10.1016/j.euromechflu.2013.12.001
Nearing, M.A., Norton, L.D., Bulgakov, D.A., Larionov, G.A., West, L.T., Dontsova, K.M.: Hydraulics and erosion in eroding rills. Water Resour. Res. 33(4), 865–876 (1997)
Ngoma, J., Philippe, P., Bonelli, S., Radjaï, F., Delenne, J.Y.: Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of Discrete Element and Lattice Boltzmann Methods. Phys. Rev. E 97, 052902 (2018). https://doi.org/10.1103/PhysRevE.97.052902
Nguyen, V.N., Courivaud, J.R., Pinettes, P., Souli, H., Fleureau, J.M.: Using an improved Jet-Erosion Test to study the influence of soil parameters on the erosion of a silty soil. J. Hydraul. Eng. 143(8), 4017018 (2017). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001305
Partheniades, E.: Erosion and deposition of cohesive soils. J. Hydraul. Div. 91(1), 105–139 (1965)
Phares, D.J., Smedley, G.T., Flagan, R.C.: The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351–375 (2000). https://doi.org/10.1017/S002211200000121X
Pierrat, P., Caram, H.S.: Tensile strength of wet granular materials. Powder Technol. 91(2), 83–93 (1997). https://doi.org/10.1016/S0032-5910(96)03179-8
Richards, K.S., Reddy, K.R.: Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 66(4), 381–402 (2007). https://doi.org/10.1007/s10064-007-0095-0
Righetti, M., Lucarelli, C.: May the Shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res Oceans (2007). https://doi.org/10.1029/2006JC003669
Rose, C.W., Olley, J.M., Haddadchi, A., Brooks, A.P., McMahon, J.: An alternative method for interpreting Jet Erosion Test (JET) data: part 1. Theory. Earth Surf. Process. Landf. 43, 735–742 (2018). https://doi.org/10.1002/esp.4269
Roy, S., Luding, S., Weinhart, T.: A general(ized) local rheology for wet granular materials. New J. Phys. 19(4), 043014 (2017). https://doi.org/10.1088/1367-2630/aa6141
Schlichting, H.: Boundary Layer Theory, 4th edn. McGraw-Hill, New York (1960)
Sibille, L., Lominé, F., Poullain, P., Sail, Y., Marot, D.: Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrol. Process. 29(9), 2149–2163 (2015). https://doi.org/10.1002/hyp.10351
Ternat, F., Boyer, P., Anselmet, F., Amielh, M.: Erosion threshold of saturated natural cohesive sediments: modeling and experiments. Water Resour. Res. (2008). https://doi.org/10.1029/2007WR006537
Tolhurst, T.J., Black, K.S., Paterson, D.M.: Muddy sediment erosion: insights from field studies. J. Hydraul. Eng. 135(2), 73–87 (2009)
Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., da Silva, J.R.M., Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850), 626–629 (2007). https://doi.org/10.1126/science.1145724
Vessaire, J., Varas, G., Joubaud, S., Volk, R., Bourgoin, M., Vidal, V.: Stability of a liquid jet impinging on confined saturated sand. Phys. Rev. Lett. 214, 224502 (2020). https://doi.org/10.1103/PhysRevLett.124.224502
Winterwerp, J.C., Van Kesteren, W.G.M.: Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment, vol. 56. Elsevier, Amsterdam (2004)
Zou, Q., He, X.: On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997). https://doi.org/10.1063/1.869307
Acknowledgements
Z. Benseghier is grateful for the financial support provided by the “Région Sud, Provence-Alpes-Côte d’Azur”. The authors would also like to thank J.-Y. Delenne, F. Lominé, and J. Duriez for fruitful discussions. Centre de Calcul Intensif d’Aix-Marseille is acknowledged for granting access to its high performance computing resources.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence the position presented in the manuscript entitled.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mov 3143 kb)
Supplementary material 3 (mov 148 kb)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Benseghier, Z., Luu, LH., Cuéllar, P. et al. On the erosion of cohesive granular soils by a submerged jet: a numerical approach. Granular Matter 25, 8 (2023). https://doi.org/10.1007/s10035-022-01289-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10035-022-01289-5

