Skip to main content
Log in

An updated critical state model by incorporating inertial effects for granular material in solid–fluid transition regime

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The open question of granular solid–fluid transition plays an important role in both modeling natural hazards and industrial particulate process. The well-developed critical state plasticity theory for granular solids and \(\mu (I)\) theory for granular liquids are limited in terms of solving this problem. Therefore, as a first study, an updated critical state model was mathematically formulated and proposed for granular material in the solid–fluid regime for its friction and dilatancy behavior. The proposed model is consistent with classical critical state plasticity theory for granular solids and \(\mu (I)\) theory for granular liquids. The introduction of two indices in the updated critical state model extends the validity domain in modeling friction and dilatancy behavior in granular materials. The updated critical state model successfully predicted the critical states in q-p-I space and \(\phi_{{\text{s}}}\)-p-I space from 96 discrete element method (DEM) simulations of triaxial loading cases with different initial porosities and confining stresses at various loading rates from slow to fast where the inertial number is from 10–4 to 0.2. The proposed critical state theory is believed to provide a new approach toward developing a visco-elasto-plastic framework for granular material in solid–fluid transition regime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Intrieri, E., Raspini, F., Fumagalli, A., Lu, L., Conte, S., Farina, P., Allievi, J., Ferretti, A., Casagli, N.: The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Ladslides 15, 123–133 (2018)

    Article  Google Scholar 

  2. Tang, C., Rengers, N., Asch, T.W.J.V., Yang, Y.H., Wang, G.: Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China. Nat. Hazard Earth Sys. 11, 2903–2912 (2011)

    Article  Google Scholar 

  3. Dixit, P.M., Dixit, U.S.: Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer Science & Business Media, London (2008)

    Google Scholar 

  4. Rao, K.K., Nott, P.R.: An introduction to granular flow. Cambridge Press, Singapore (2008)

    Book  Google Scholar 

  5. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  6. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular media: between fluid and solid. Cambridge University Press, Singapore (2013)

    Book  Google Scholar 

  7. Roux S., Radjai F. (1998) Texture-dependent rigid-plastic behavior. in H.J. Herrmann, Hovi J.P., Luding S. (Eds.) Physics of dry granular media, pp. 229–236. Dordrecht: Springer

  8. Li, X., Dafalias, Y.F.: Dilatancy for cohesionless soils. Geotechnique 50, 449–460 (2000)

    Article  Google Scholar 

  9. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On The Yielding of Soils. Geotechnique 8, 22–53 (1958)

    Article  Google Scholar 

  10. Wood, D.M.: Geotechnical modelling. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  11. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Takahashi, T., Das, D.: Debris flow: mechanics, prediction and countermeasures. CRC Press, Boca Raton (2014)

    Google Scholar 

  13. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    ADS  Google Scholar 

  14. MiDi, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  15. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  16. Bui, H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Num. Anal. Met. 32, 1537–1570 (2008)

    Article  Google Scholar 

  17. An, Y., Wu, Q., Shi, C., Liu, Q.: Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure. Géotechnique 66, 670–680 (2016)

    Article  Google Scholar 

  18. Yang, S., Wang, X., Liu, Q., Pan, M.: Numerical simulation of fast granular flow facing obstacles on steep terrains. J. Fluid. Struct. 99, 103162 (2020)

    Article  ADS  Google Scholar 

  19. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  20. Babic, M., Shen, H.H., Shen, H.T.: The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J. Fluid Mech. 219, 81–118 (1990)

    Article  ADS  Google Scholar 

  21. Ji, S.Y., Shen, H.H.: Internal parameters and regime map for soft polydispersed granular materials. J. Rheol. 52(1), 87–103 (2008)

    Article  ADS  Google Scholar 

  22. Aranson, I., Tsimring, L.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  23. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)

    Article  ADS  Google Scholar 

  24. Balmforth, N.J., Frigaard, I.A., Ovarlez, G.: Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121–146 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  25. Pastor, M., Balanc, T., Pastor, M.J.: A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J. Non-newton. Fluid 158, 142–153 (2009)

    Article  Google Scholar 

  26. Andrade, J.E., Chen, Q., Phong, H.L., Avila, C.F., Evans, T.M.: On the rheology of dilative granular media: bridging solid and fluid-like behavior. J. Mech. Phys. Solids 60, 1122–1136 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. Yin, Z., Chang, C., Minna, K., Hicher, P.: An anisotropic elastic–viscoplastic model for soft clays. Int. J. of Solids Struct. 47, 665–677 (2010)

    Article  Google Scholar 

  28. Yin, Z., Wang, J.: A one-dimensional strain-rate based model for soft structured clays. Sci. China Tech. Sc. 55, 90–100 (2012)

    Article  ADS  Google Scholar 

  29. Wang, X., Li, J.: Simulation of triaxial response of granular materials by modified DEM. Sci. China Phys. Mech. 57, 2297–2308 (2014)

    Article  Google Scholar 

  30. Wang, X., Zhang, Z., Li, J.: Triaxial behavior of granular material under complex loading path by a new numerical true triaxial engine. Adv. Powder Technol. 30, 700–706 (2019)

    Article  Google Scholar 

  31. Antypov, D., Elliott, J.: On an analytical solution for the damped Hertzian spring. Europhys. Lett. 94, 50004 (2011)

    Article  ADS  Google Scholar 

  32. Šmilauer V., Catalano E., Chareyre B.: Yade Documentation, The Yade Project. Theoretical & Applied Mechanics Letters letpub http://yade-dem.org/doc/

  33. Liu, C., Sun, Q., Zhou, G.D.: Velocity profiles and energy fluctuations in simple shear granular flows. Particuology 27, 80–87 (2016)

    Article  Google Scholar 

  34. Jiang, M., Yu, H., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comp. Geotech. 32, 340–357 (2005)

    Article  Google Scholar 

  35. Wang, S., Marmysh, D., Ji, S.: Construction of irregular particles with superquadric equation in DEM. Theor. Appl. Mech. Lett. 10, 68–73 (2020)

    Article  Google Scholar 

  36. Sun, Y., Zhang, W., Wang, X., Liu, Q.: Numerical study on immersed granular collapse in viscous regime by particle-scale simulation. Phys. Fluids 32, 073313 (2020)

    Article  ADS  Google Scholar 

  37. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  38. Hatano, T.: Power-law friction in closely packed granular materials. Phys. Rev. E 75, 060301 (2007)

    Article  ADS  Google Scholar 

  39. Zheng, Q., Bai, L., Yang, L., Yu, A.B.: 110th anniversary: continuum modeling of granular mixing in a rotating drum. Ind. Eng. Chem. Res. 58, 19252–19262 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received by the National Natural Sciences Foundation of China (No.12172057, 12032005, 12132018), National Key R&D Program of China (2018YFC1505504), and “Beijing Institute of Technology Research Fund Program for Young Scholars”. We also appreciate the comments and suggestions by the two anonymous reviewers which much improved the quality of this paper. We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The data could be obtained by request from the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, G. & Liu, Q. An updated critical state model by incorporating inertial effects for granular material in solid–fluid transition regime. Granular Matter 24, 38 (2022). https://doi.org/10.1007/s10035-021-01202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01202-6

Keywords

Navigation