Skip to main content
Log in

Powder spreading in laser-powder bed fusion process

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Laser-Powder Bed Fusion (LPBF) has been extensively utilized by a broad range of manufacturing industries in recent years. Fabricating parts with high mechanical properties and smooth surfaces has motivated such industries and academic communities to study different aspects and steps of the LPBF process, including powder spreading, laser scanning, and solidification. Creation of highly dense powder layers with lower surface roughness before laser scanning step is a must for producing non-porose part layers after laser scanning step of LPBF process. Thus, the initial powder spreading step of the LPBF process has been investigated to correlate the powder spreadability to powder layer quality and consequent part properties. The current review paper summarizes the previous work performed to define some spreadability metrics and determine the impact of LPBF process parameters and powder characteristics on powder spreadability. The spread powder layer's quality, which is called powder spreadability, is discussed in terms of empty areas on the substrate, powder bed density, powder surface roughness, powder dynamic repose angle, and powder mass flow rate. Also, the influence of LPBF process parameters, including recoating velocity, layer thickness, and recoater type, and powder characteristics, like particle size distribution, on the defined spreadability metrics are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Behdani, B., Senter, M., Mason, L., Leu, M., Park, J.: Numerical study on the temperature-dependent viscosity effect on the strand shape in extrusion-based additive manufacturing. J. Manuf. Mater. Process. 4, 46 (2020). https://doi.org/10.3390/jmmp4020046

    Article  Google Scholar 

  2. Hung, C.H., Chen, W.T., Sehhat, M.H., Leu, M.C.: The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-06402-7

    Article  Google Scholar 

  3. Mahdianikhotbesara, A., Sehhat, M.H., Hadad, M.: Experimental study on micro-friction stir welding of dissimilar butt joints between Al 1050 and pure copper. Metallogr. Microstruct. Anal. (2021). https://doi.org/10.1007/s13632-021-00771-5

    Article  Google Scholar 

  4. Bhuvanesh Kumar, M., Sathiya, P.: Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin-Walled Struct. 159, 107228 (2021). https://doi.org/10.1016/j.tws.2020.107228

    Article  Google Scholar 

  5. Tan, J.H., Wong, W.L.E., Dalgarno, K.W.: An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit. Manuf. 18, 228–255 (2017). https://doi.org/10.1016/j.addma.2017.10.011

    Article  Google Scholar 

  6. Kergaßner, A., Koepf, J.A., Markl, M., Körner, C., Mergheim, J., Steinmann, P.: A novel approach to predict the process-induced mechanical behavior of additively manufactured materials. J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/S11665-021-05725-0

    Article  Google Scholar 

  7. He, Y., Hassanpour, A., Bayly, A.E.: Linking particle properties to layer characteristics: discrete element modelling of cohesive fine powder spreading in additive manufacturing. Addit. Manuf. 36, 101685 (2020). https://doi.org/10.1016/j.addma.2020.101685

    Article  Google Scholar 

  8. Liang, X., Dong, W., Chen, Q., To, A.C.: On incorporating scanning strategy effects into the modified inherent strain modeling framework for laser powder bed fusion. Addit. Manuf. 37, 101648 (2021). https://doi.org/10.1016/J.ADDMA.2020.101648

    Article  Google Scholar 

  9. Rausch, A.M., Pistor, J., Breuning, C., Markl, M., Körner, C.: New grain formation mechanisms during powder bed fusion. Materials 14, 3324 (2021). https://doi.org/10.3390/MA14123324

    Article  ADS  Google Scholar 

  10. Cobbinah, P.V., Nzeukou, R.A., Onawale, O.T., Matizamhuka, W.R.: Laser powder bed fusion of potential superalloys: a review. Metals (Basel) 11, 1–37 (2021). https://doi.org/10.3390/met11010058

    Article  Google Scholar 

  11. Reith, M., Franke, M., Schloffer, M., Körner, C.: Processing 4th generation titanium aluminides via electron beam based additive manufacturing—characterization of microstructure and mechanical properties. Materialia. 14, 100902 (2020). https://doi.org/10.1016/J.MTLA.2020.100902

    Article  Google Scholar 

  12. Haeri, S., Haeri, S., Hanson, J., Lotfian, S.: Analysis of Radiation Pressure and Aerodynamic Forces Acting on Powder Grains in Powder-Based Additive Manufacturing, n.d

  13. Haeri, S., Benedetti, L., Ghita, O.: Effects of particle elongation on the binary coalescence dynamics of powder grains for Laser Sintering applications, (n.d.)

  14. King, W.E., Barth, H.D., Castillo, V.M., Gallegos, G.F., Gibbs, J.W., Hahn, D.E., Kamath, C., Rubenchik, A.M.: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014). https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  15. Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016). https://doi.org/10.1016/j.actamat.2016.02.014

    Article  ADS  Google Scholar 

  16. Spierings, A.B., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp. J. 17, 195–202 (2011). https://doi.org/10.1108/13552541111124770

    Article  Google Scholar 

  17. Gibson, I., Shi, D.: Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp. J. 3, 129–136 (1997). https://doi.org/10.1108/13552549710191836

    Article  Google Scholar 

  18. Breuning, C., Arnold, C., Markl, M., Körner, C.: A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion. Addit. Manuf. 45, 102051 (2021). https://doi.org/10.1016/J.ADDMA.2021.102051

    Article  Google Scholar 

  19. Moghadasi, M., Du, W., Li, M., Pei, Z., Ma, C.: Ceramic binder jetting additive manufacturing: effects of particle size on feedstock powder and final part properties. Ceram. Int. 46, 16966–16972 (2020). https://doi.org/10.1016/j.ceramint.2020.03.280

    Article  Google Scholar 

  20. Snow, Z., Martukanitz, R., Joshi, S.: On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit. Manuf. 28, 78–86 (2019). https://doi.org/10.1016/j.addma.2019.04.017

    Article  Google Scholar 

  21. Chen, H., Wei, Q., Wen, S., Li, Z., Shi, Y.: Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method. Int. J. Mach. Tools Manuf. 123, 146–159 (2017). https://doi.org/10.1016/j.ijmachtools.2017.08.004

    Article  Google Scholar 

  22. Macho, O., Demková, K., Gabrišová, Ľ, Čierny, M., Mužíková, J., Galbavá, P., Nižnanská, Ž, Blaško, J., Peciar, P., Fekete, R., Peciar, M.: Analysis of static angle of repose with respect to powder material properties. Acta Polytech. 60, 73–80 (2020). https://doi.org/10.14311/AP.2020.60.0073

    Article  Google Scholar 

  23. Spierings, A.B., Voegtlin, M., Bauer, T., Wegener, K.: Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog. Addit. Manuf. 1, 9–20 (2016). https://doi.org/10.1007/s40964-015-0001-4

    Article  Google Scholar 

  24. Zhang, J., Tan, Y., Bao, T., Xu, Y., Xiao, X., Jiang, S.: Discrete element simulation of the effect of roller-spreading parameters on powder-bed density in additive manufacturing. Mater. (Basel) (2020). https://doi.org/10.3390/ma13102285

    Article  Google Scholar 

  25. Cao, L.: Study on the numerical simulation of laying powder for the selective laser melting process. Int. J. Adv. Manuf. Technol. 105, 2253–2269 (2019). https://doi.org/10.1007/s00170-019-04440-4

    Article  Google Scholar 

  26. Ahmed, M., Pasha, M., Nan, W., Ghadiri, M.: A simple method for assessing powder spreadability for additive manufacturing. Powder Technol. 367, 671–679 (2020). https://doi.org/10.1016/j.powtec.2020.04.033

    Article  Google Scholar 

  27. Cordova, L., Bor, T., de Smit, M., Campos, M., Tinga, T.: Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusion. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101082

    Article  Google Scholar 

  28. Haeri, S., Wang, Y., Ghita, O., Sun, J.: Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol. 306, 45–54 (2017). https://doi.org/10.1016/j.powtec.2016.11.002

    Article  Google Scholar 

  29. Fouda, Y.M., Bayly, A.E.: A DEM study of powder spreading in additive layer manufacturing. Granul. Matter. (2020). https://doi.org/10.1007/s10035-019-0971-x

    Article  Google Scholar 

  30. Parteli, E.J.R., Pöschel, T.: Particle-based simulation of powder application in additive manufacturing. Powder Technol. 288, 96–102 (2015). https://doi.org/10.1016/j.powtec.2015.10.035

    Article  Google Scholar 

  31. Desai, P.S., Fred Higgs, C.: Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals (Basel) (2019). https://doi.org/10.3390/met9111176

    Article  Google Scholar 

  32. Chen, H., Wei, Q., Zhang, Y., Chen, F., Shi, Y., Yan, W.: Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling. Acta Mater. 179, 158–171 (2019). https://doi.org/10.1016/j.actamat.2019.08.030

    Article  ADS  Google Scholar 

  33. Escano, L.I., Parab, N.D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart, W., Sun, T., Chen, L.: Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-018-33376-0

    Article  Google Scholar 

  34. Schmidt, J., Parteli, E.J.R., Uhlmann, N., Wörlein, N., Wirth, K.E., Pöschel, T., Peukert, W.: Packings of micron-sized spherical particles—Insights from bulk density determination, X-ray microtomography and discrete element simulations. Adv. Powder Technol. 31, 2293–2304 (2020). https://doi.org/10.1016/j.apt.2020.03.018

    Article  Google Scholar 

  35. Parteli, E.J.R., Schmidt, J., Blümel, C., Wirth, K.E., Peukert, W., Pöschel, T.: Attractive particle interaction forces and packing density of fine glass powders. Sci. Rep. 4, 1–7 (2014). https://doi.org/10.1038/srep06227

    Article  Google Scholar 

  36. Baule, A., Mari, R., Bo, L., Portal, L., Makse, H.A.: ARTICLE Mean-field theory of random close packings of axisymmetric particles. Nat. Commun. (2013). https://doi.org/10.1038/ncomms3194

    Article  Google Scholar 

  37. Strondl, A., Lyckfeldt, O., Brodin, H., Ackelid, U.: Characterization and control of powder properties for additive manufacturing. JOM 67, 549–554 (2015). https://doi.org/10.1007/s11837-015-1304-0

    Article  Google Scholar 

  38. Arévalo, R., Maza, D., Pugnaloni, L.A.: Identification of arches in two-dimensional granular packings. Phys. Rev. E (2006). https://doi.org/10.1103/PhysRevE.74.021303

    Article  Google Scholar 

  39. Verbücheln, F., Parteli, E.J.R., Pöschel, T.: Helical inner-wall texture prevents jamming in granular pipe flows. Soft Matter 11, 4295–4305 (2015). https://doi.org/10.1039/c5sm00760g

    Article  ADS  Google Scholar 

  40. Shaheen, M.Y., Thornton, A.R., Luding, S., Weinhart, T.: The influence of material and process parameters on powder spreading in additive manufacturing. Powder Technol. 383, 564–583 (2021). https://doi.org/10.1016/j.powtec.2021.01.058

    Article  Google Scholar 

  41. Le, T.P., Wang, X., Davidson, K.P., Fronda, J.E., Seita, M.: Experimental analysis of powder layer quality as a function of feedstock and recoating strategies. Addit. Manuf. 39, 101890 (2021). https://doi.org/10.1016/J.ADDMA.2021.101890

    Article  Google Scholar 

  42. Wang, L., Yu, A., Li, E., Shen, H., Zhou, Z.: Effects of spreader geometry on powder spreading process in powder bed additive manufacturing. Powder Technol. (2021). https://doi.org/10.1016/j.powtec.2021.02.022

    Article  Google Scholar 

  43. Haeri, S.: Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations. Powder Technol. 321, 94–104 (2017). https://doi.org/10.1016/j.powtec.2017.08.011

    Article  Google Scholar 

  44. Yao, D., An, X., Fu, H., Zhang, H., Yang, X., Zou, Q., Dong, K.: Dynamic investigation on the powder spreading during selective laser melting additive manufacturing. Addit. Manuf. 37, 101707 (2021). https://doi.org/10.1016/j.addma.2020.101707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hossein Sehhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehhat, M.H., Mahdianikhotbesara, A. Powder spreading in laser-powder bed fusion process. Granular Matter 23, 89 (2021). https://doi.org/10.1007/s10035-021-01162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01162-x

Keywords

Navigation