Skip to main content
Log in

Planar piston motion in dilute granular-gaseous mixture

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper investigates the one-dimensional planar piston problem in dilute granular-gaseous mixture using both analytical and numerical approaches. Starting from the Euler equations of the two-fluid model, a one-way coupling model for dilute granular flow was derived assuming that the piston speed is higher than the sound speed of the granular phase, but much smaller than that of the gaseous phase—which results in a shock wave propagating in the granular phase. It was shown that the dissipation terms of this model—the drag force and inelastic collisions—affect the shock wave structure. A reference analytical solution for fully elastic particles assuming that the linear drag is the only dissipation mechanism predicted a shock wave structure that is similar to ideal molecular gas but decays exponentially with time. The nonlinear drag component resulted in decreasing velocity and density behind the shock while the temperature increases, in an opposite trend to the effect of inelastic collisions. It was shown that the combined effects of both nonlinear drag and inelastic collisions could result in either two regimes depending on the values of their corresponding parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Campbell, C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22(1), 57–90 (1990)

    Article  ADS  Google Scholar 

  2. Chou, P.C., Huang, S.L.: Late-stage equivalence in spherical blasts as calculated by the method of characteristics. J. Appl. Phys. 40(2), 752–759 (1969)

    Article  ADS  Google Scholar 

  3. Chou, P.C., Karpp, R.R., Huang, S.L.: Numerical calculation of blast waves by the method of characteristics. AIAA J 5(4), 618–623 (1967)

    Article  ADS  Google Scholar 

  4. Fouda, Y.M.: Shock-contact-shock solutions of the Riemann problem for dilute granular gas. J. Fluid Mech. 915, A48 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  5. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic press, Cambridge (1994)

    MATH  Google Scholar 

  6. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35(1), 267–293 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182(2), 130–136 (2008)

    Article  Google Scholar 

  8. Goldshtein, A., Shapiro, M., Gutfinger, C.: Mechanics of collisional motion of granular materials. Part 3. Self-similar shock wave propagation. J. Fluid Mech. 316, 29–51 (1996)

    Article  ADS  Google Scholar 

  9. Higashino, F.: Characteristic method applied to blast waves in a dusty gas. Z. Naturforsch. A 38(4), 399–406 (1983)

    Article  ADS  Google Scholar 

  10. Houim, R.W., Oran, E.S.: A multiphase model for compressible granular-gaseous flows: formulation and initial tests. J. Fluid Mech. 789, 166–220 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  11. Kamenetsky, V., Goldshtein, A., Shapiro, M., Degani, D.: Evolution of a shock wave in a granular gas. Phys. Fluids 12(11), 3036–3049 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  12. Koch, D.L., Sangani, A.S.: Particle pressure and marginal stability limits for a homogeneous monodisperse gasfluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400, 229–263 (1999)

    Article  ADS  Google Scholar 

  13. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  14. Moretti, G.: Thirty-six years of shock fitting. Comput. Fluids 31(4), 719–723 (2002)

    Article  Google Scholar 

  15. Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by the method of characteristics. Phys. Fluids 26(5), 1234–1239 (1983)

    Article  ADS  Google Scholar 

  16. Panicker, N., Passalacqua, A., Fox, R.: On the hyperbolicity of the two-fluid model for gas-liquid bubbly flows. Appl. Math. Model. 57, 432–447 (2018)

    Article  MathSciNet  Google Scholar 

  17. Reddy, M.H.L., Alam, M.: Plane shock waves and Haff’s law in a granular gas. J. Fluid Mech. 779, R2 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. Sirmas, N., Radulescu, M.I.: Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions. Phys. Rev. E 91(2), 023003 (2015)

    Article  ADS  Google Scholar 

  19. Sirmas, N., Radulescu, M.I.: Structure and stability of shock waves in granular gases. J. Fluid Mech. 873, 568–607 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  20. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)

    Google Scholar 

  21. Vardy, A.E., Tijsseling, A.S.: Method of characteristics for transient, spherical flows. Appl. Math. Model. 77, 810–828 (2020)

    Article  MathSciNet  Google Scholar 

  22. Zeidan, D., Slaouti, A., Romenski, E., Toro, E.F.: Numerical solution for hyperbolic conservative two-phase flow equations. Int. J. Comput. Methods 04(02), 299–333 (2007)

    Article  MathSciNet  Google Scholar 

  23. Zeidan, D., Slaouti, A., Touma, R.: Compressible gassolid mixture conservation laws simulations. AIP Conf. Proc. 1479(1), 165–168 (2012)

    Article  ADS  Google Scholar 

  24. Zhang, Q., He, F.: The exact Riemann solutions to the generalized pressureless Euler equations with dissipation. Bull. Malays. Math. Sci. Soc. 43, 4361–4374 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y., Zhang, Y.: The Riemann problem for the Eulerian droplet model with buoyancy and gravity forces. Eur. Phys. J. Plus 135(2), 171 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahia M. Fouda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, Y.M. Planar piston motion in dilute granular-gaseous mixture. Granular Matter 23, 85 (2021). https://doi.org/10.1007/s10035-021-01145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01145-y

Keywords

Navigation