Postponing the dynamical transition density using competing interactions


Systems of dense spheres interacting through very short-ranged attraction are known from theory, simulations and colloidal experiments to exhibit dynamical reentrance. Their liquid state can thus be fluidized at higher densities than possible in systems with pure repulsion or with long-ranged attraction. A recent mean-field, infinite-dimensional calculation predicts that the dynamical arrest of the fluid can be further delayed by adding a longer-ranged repulsive contribution to the short-ranged attraction. We examine this proposal by performing extensive numerical simulations in a three-dimensional system. We first find the short-ranged attraction parameters necessary to achieve the densest liquid state, and then explore the parameter space for an additional longer-ranged repulsion that could further enhance reentrance. In the family of systems studied, no significant (within numerical accuracy) delay of the dynamical arrest is observed beyond what is already achieved by the short-ranged attraction. Possible explanations are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Stradner, A., Sedgwick, H., Cardinaux, F., Poon, W.C.K., Egelhaaf, S.U., Schurtenberger, P.: Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    Mani, E., Lechner, W., Kegeld, W.K., Bolhuis, P.G.: Equilibrium and non-equilibrium cluster phases in colloids with competing interactions. Soft Matter 10, 4479 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    Zhuang, Y., Charbonneau, P.: Equilibrium phase behavior of the square-well linear microphase-forming model. J. Phys. Chem. B 120, 6178 (2016)

    Article  Google Scholar 

  4. 4.

    Ciach, A., Pekalski, J., Gozdz, W.T.: Origin of similarity of phase diagrams in amphiphilic and colloidal systems with competing interactions. Soft Matter 9, 6301 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    Lindquist, B.A., Jadrich, R.B., Milliron, D.J., Truskett, T.M.: On the formation of equilibrium gels via a macroscopic bond limitation. J. Chem. Phys. 145, 074906 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    Bollinger, J.A., Truskett, T.M.: Fluids with competing interactions. I. Decoding the structure factor to detect and characterize self-limited clustering. J. Chem. Phys. 145, 064902 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Bollinger, J.A., Truskett, T.M.: Fluids with competing interactions. II. Validating a free energy model for equilibrium cluster size. J. Chem. Phys. 145, 064903 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    Jadrich, R.B., Lindquist, B.A., Truskett, T.M.: Probabilistic inverse design for self-assembling materials. J. Chem. Phys. 146, 184103 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    Cao, C., Huang, X., Roth, C.B., Weeks, E.R.: Aging near rough and smooth boundaries in colloidal glasses. J. Chem. Phys. 147(22), 224505 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    Zhuang, Y., Charbonneau, P.: Microphase equilibrium and assembly dynamics. J. Chem. Phys. 147, 091102 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Coniglio, A., Arcangelis, L.D., Gado, E.D., Fierro, A., Sator, N.: Percolation, gelation and dynamical behaviour in colloids. J. Phys.: Condens. Matter 16, S4831 (2004)

    ADS  Google Scholar 

  12. 12.

    Abete, T., de Candia, A., Gado, E.D., Fierro, A., Coniglio, A.: Static and dynamic heterogeneities in a model for irreversible gelation. Phys. Rev. Lett. 98, 088301 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    Maimbourg, T., Sellitto, M., Semerjian, G., Zamponi, F.: Generating dense packings of hard spheres by soft interaction design. SciPost Phys. 4, 039 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8, 265 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    Sellitto, M., Zamponi, F.: Packing hard spheres with short-range attraction in infinite dimension: phase structure and algorithmic implications. J. Phys: Conf. Ser. 473, 012020 (2013)

    Google Scholar 

  16. 16.

    Sellitto, M., Zamponi, F.: A thermodynamic description of colloidal glasses. Eur. Phys. Lett. 103, 46005 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    Fabbian, L., Götze, W., Sciortino, F., Tartaglia, P., Thiery, F.: Ideal glass–glass transitions and logarithmic decay of correlations in a simple system. Phys. Rev. E 59, R1347 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    Bergenholtz, J., Fuchs, M.: Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys. Rev. E 59, 5706 (1999)

    ADS  Article  Google Scholar 

  19. 19.

    Dawson, K., Foffi, G., Fuchs, M., Götze, W., Sciortino, F., Sperl, M., Tartaglia, P., Voigtmann, T., Zaccarelli, E.: Higher-order glass-transition singularities in colloidal systems with attractive interactions. Phys. Rev. E 63, 011401 (2000)

    ADS  Article  Google Scholar 

  20. 20.

    Götze, W., Sperl, M.: Logarithmic relaxation in glass-forming systems. Phys. Rev. E 66, 011405 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    Chu, X., Lagi, M., Mamontov, E., Fratini, E., Baglioni, P., Chen, S.-H.: Experimental evidence of logarithmic relaxation in single-particle dynamics of hydrated protein molecules. Soft Matter 6, 2623 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaïd, A., Pusey, P.N., Schofield, A.B., Cates, M.E., Fuchs, M., Poon, W.C.K.: Multiple glassy states in a simple model system. Science 296, 104 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    Chen, S.-H., Chen, W.-R., Mallamace, F.: The glass-to-glass transition and its end point in a copolymer micellar system. Science 300, 619 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    Eckert, T., Bartsch, E.: Re-entrant glass transition in a colloid–polymer mixture with depletion attractions. Phys. Rev. Lett. 89, 125701 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    Mallamace, F., Gambadauro, P., Micali, N., Tartaglia, P., Liao, C., Chen, S.-H.: Kinetic glass transition in a micellar system with short-range attractive interaction. Phys. Rev. Lett. 84, 5431 (2000)

    ADS  Article  Google Scholar 

  26. 26.

    Lu, X., Mochrie, S.G.J., Narayanan, S., Sandy, A.R., Sprung, M.: How a liquid becomes a glass both on cooling and on heating. Phys. Rev. Lett. 100, 045701 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    Gnan, N., Das, G., Sperl, M., Sciortino, F., Zaccarelli, E.: Multiple glass singularities and isodynamics in a core-softened model for glass-forming systems. Phys. Rev. Lett. 113, 258302 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    Sciortino, F., Tartaglia, P., Zaccarelli, E.: Evidence of a higher-order singularity in dense short-ranged attractive colloids. Phys. Rev. Lett. 91, 268301 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    Zaccarelli, E., Foffi, G., Dawson, K.A., Buldyrev, S.V., Sciortino, F., Tartaglia, P.: Confirmation of anomalous dynamical arrest in attractive colloids: a molecular dynamics study. Phys. Rev. E 66, 041402 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    Moreno, A.J., Colmenero, J.: Is there a higher-order mode coupling transition in polymer blends? J. Chem. Phys. 124, 184906 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    Moreno, A.J., Colmenero, J.: Tests of mode coupling theory in a simple model for two-component miscible polymer blends. J. Phys.: Condens. Matter 19, 466112 (2007)

    ADS  Google Scholar 

  32. 32.

    Foffi, G., Dawson, K.A., Buldyrev, S.V., Sciortino, F., Zaccarelli, E., Tartaglia, P.: Evidence for an unusual dynamical-arrest scenario in short-ranged colloidal systems. Phys. Rev. E 65, 050802(R) (2002)

    ADS  Article  Google Scholar 

  33. 33.

    Puertas, A.M., Fuchs, M., Cates, M.E.: Comparative simulation study of colloidal gels and glasses. Phys. Rev. Lett. 88, 098301 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    Charbonneau, P., Reichman, D.R.: Dynamical heterogeneity and nonlinear susceptibility in supercooled liquids with short-range attraction. Phys. Rev. Lett. 99, 135701 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    Sciortino, F.: Disordered materials—one liquid, two glasses. Nat. Mater. 1(3), 145–146 (2002)

    ADS  Article  Google Scholar 

  36. 36.

    Berthier, L.: Revisiting the slow dynamics of a silica melt using monte carlo simulations. Phys. Rev. E 76, 011507 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    Berthier, L., Kob, W.: The Monte Carlo dynamics of a binary lennardjones glass-forming mixture. J. Phys.: Condens. Matter 19, 205130 (2007)

    ADS  Google Scholar 

  38. 38.

    Rutkai, G., Kristóf, T.: Dynamic Monte Carlo simulation in mixtures. J. Chem. Phys. 132, 104107 (2010)

    ADS  Article  Google Scholar 

  39. 39.

    Foffi, G., Gotze, W., Sciortino, F., Tartaglia, P., Voigtmann, T.: \(\alpha\)-Relaxation processes in binary hard-sphere mixtures. Phys. Rev. E 69, 011505 (2004)

    ADS  Article  Google Scholar 

Download references


This paper is dedicated to the late Bob Behringer, who has always been warm, wise and supportive to this junior colleague (PC). He will be sorely missed. We acknowledge funding from the Simons Foundation (Grant # 454937 to PC) and computer time of Duke Compute Cluster (DCC) and Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation Grant No. ACI-1548562.

Author information



Corresponding author

Correspondence to Joyjit Kundu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charbonneau, P., Kundu, J. Postponing the dynamical transition density using competing interactions. Granular Matter 22, 55 (2020).

Download citation


  • Disorder systems
  • Glass
  • Dynamical transition
  • Square-well
  • Square-shoulder
  • Dynamical criticality