Skip to main content
Log in

A discrete element framework for modeling the mechanical behaviour of snow—Part I: Mechanical behaviour and numerical model

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A framework for investigating the mechanics of snow is proposed based on an advanced micro-scale approach. Varying strain rates, densities and temperatures are taken into account. Natural hazards i.e. snow avalanches are triggered by snow deforming at low rates, while a large group of industrial applications concerning driving safety or winter sport activities require an understanding of snow behaviour under high deformation rates. On the micro-scale, snow is considered to consist of ice grains joined by ice bonds to build a porous structure. Deformation and failure of bonds and the inter-granular collisions of ice grains determine the macroscopic response under mechanical load. Therefore, this study proposes an inter-granular bond and collision model for snow based on the discrete element method to describe interaction on a grain-scale. It aims at predicting the mechanical behaviour of ice particles under different strain rates using a unified approach. Thus, the proposed algorithm predicts the displacement of each individual grains due to inter-granular forces and torques that derive from bond deformation and grain collision. For this purpose, the inter-granular characteristics are approximated by an elastic viscous-plastic material law which is based on the temperature-dependent properties of poly-crystalline ice Ih.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akkok, M., Ettles, C.M.M., Calabrese, S.J.: Parameters affecting the kinetic friction of ice. J. Tribol. 109, 552–559 (1987). https://asmedigitalcollection.asme.org/tribology/article-pdf/109/3/552/5696634/552_1.pdf

  2. Allen, M., Allen, M., Tildesley, D., Allen, T., Tildesley, D.: Computer simulation of liquids. Clarendon Press, Oxford Science Publ, Oxford (1989)

    MATH  Google Scholar 

  3. Barnes, P., Tabor, D., Walker, J.C.F., And, F.R.S.: The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1557, 127–155 (1971)

    ADS  Google Scholar 

  4. Bazant, Z., Zi, G., Mcclung, D.: Size effect law and fracture mechanics of the triggering of dry snow slab avalanches. J. Geophys. Res. (Solid Earth) (2003). https://doi.org/10.1029/2002JB001884

    Article  Google Scholar 

  5. Brendel, L., Pengiran, Y., Röck, M., Wahl, M., Bröckel, U.: Modeling of caked contacts in dems. Chem. Eng. Technol. 29, 1355–1359 (2006). https://doi.org/10.1002/ceat.200600132

    Article  Google Scholar 

  6. Colbeck, S.C.: A review of sintering in seasonal snow. CRREL Rep. 97–10  (1997)

  7. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  8. Džiugys, A., Peters, B.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Matter 3, 231–266 (2001)

    Article  Google Scholar 

  9. Džiugys, A., Peters, B., Hunsinger, H., Krebs, L.: Evaluation of the residence time of a moving fuel bed on a forward acting grate. Granul. Matter 8, 125–135 (2006)

    Article  Google Scholar 

  10. Džiugys, A., Peters, B., Navakas, R., Misiulis, E.: Density segregation on a moving grate. Powder Technol. 305, 323–332 (2017)

    Article  Google Scholar 

  11. Fan, X., Ten, P., Clarke, C., Bramley, A., Zhang, Z.: Direct measurement of the adhesive force between ice particles by micromanipulation. Powder Technol. 131, 105–110 (2003)

    Article  Google Scholar 

  12. Faraday, M.: Note on regelation. Proc. R. Soc. Lond. 10, 440–450 (1859)

    Google Scholar 

  13. Gammon, P.H., Kiefte, H., Clouter, M.J., Denner, W.W.: Elastic constants of artificial and natural ice samples by brillouin spectroscopy. J. Glaciol. 29, 433–460 (1983)

    Article  ADS  Google Scholar 

  14. Gaume, J., Van Herwijnen, A., Chambon, G., Birkeland, K.W., Schweizer, J.: Modeling of crack propagation in weak snowpack layers using the discrete element method. Cryosphere 9, 1915–1932 (2015)

    Article  ADS  Google Scholar 

  15. Gubler, H.: Strength of bonds between ice grains after short contact times. J. Glaciol. 28, 457–473 (1982)

    Article  ADS  Google Scholar 

  16. Hagenmuller, P., Chambon, G., Flin, F., Morin, S., Naaim, M.: Snow as a granular material: Assessment of a new grain segmentation algorithm. Granular Matter 16, 421–432 (2014)

    Article  Google Scholar 

  17. Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., Naaim, M.: Energy-based binary segmentation of snow microtomographic images. J. Glaciol. 59, 859–873 (2013)

    Article  ADS  Google Scholar 

  18. Hagenmuller, P., Chambon, G., Naaim, M.: Microstructure-based modeling of snow mechanics: a discrete element approach. Cryosphere 9, 1969–1982 (2015)

    Article  ADS  Google Scholar 

  19. Hertz, H.: Über die Berührung fester elastischer Körper. J. R. Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  20. Higa, M., Arakawa, M., Maeno, N.: Size dependence of restitution coefficients of ice in relation to collision strength. Icarus 133, 310–320 (1998)

    Article  ADS  Google Scholar 

  21. Johnson, J.B., Hopkins, M.A.: Identifying microstructural deformation mechanisms in snow using discrete-element modeling. J. Glaciol. 51, 432–442 (2005)

    Article  ADS  Google Scholar 

  22. Kabore, B., Peters, B., Willibald, C., Thiele, T., Schneebeli, M.: Multi-scale modelling of snow mechanics. In: 41st Solid Mechanics Conference (SOLMECH 2018), Warsaw, Poland (2018)

  23. Kabore, B.W., Peters, B.: Micromechanical model for sintering and damage in viscoelastic porous ice and snow. Part I: Model and calibration. Int. J. Solids Struct. 185–186, 324–333 (2020a)

    Article  Google Scholar 

  24. Kabore, B.W., Peters, B.: Micromechanical model for sintering and damage in viscoelastic porous ice and snow. Part ii: Validation. Int. J. Solids Struct. 185–186, 281–291 (2020b)

    Article  Google Scholar 

  25. Kaempfer, T.U., Schneebeli, M.: Observation of isothermal metamorphism of new snow and interpretation as a sintering process. J. Geophys. Res. Atmos. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007JD009047 (2007)

  26. Kim, S.Y., Sasaki, Y.: Simulation of effect of pore structure on coke strength using 3-dimensional discrete element method. ISIJ Int. 50, 813–821 (2010)

    Article  Google Scholar 

  27. Kinosita, S.: Compression of snow at constant speed. In: International conference on low temperature science: physics of snow and ice, pp. 911–927 (1967)

  28. Kirchner, H.O.K., Michot, G., Narita, H., Suzuki, T.: Snow as a foam of ice: plasticity, fracture and the brittle-to-ductile transition. Philos. Mag. Part A 81, 2161–2181 (2001)

    Article  ADS  Google Scholar 

  29. Lin, X., Ng, T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47, 319–329 (1997). https://doi.org/10.1680/geot.1997.47.2.319

    Article  Google Scholar 

  30. Mark, M., 2014. Discrete approach to describe the kinematics between snow and a tire tread. Ph.D. thesis. University of Luxembourg

  31. Mellor, M.: A review of basic snow mechanics. In: Snow mechanics Symposium, pp. 251–291. IAHS-Publication, Grindelwald (1974)

  32. Meyssonnier, J., Philip, A., Capolo, L., Mansuy, P.: Experimental studies of the viscoplasticty of ice and snow. In: Kolymbas, D. (ed.) Mechanics of Natural Solids, pp. 203–221. Springer, Berlin Heidelberg (2009)

    Chapter  Google Scholar 

  33. Nakaya, U., Matsumoto, A.: Simple experiment showing the existence of “liquid water-film” on the ice surface. J. Colloid Sci. 9, 41–49 (1954)

    Article  Google Scholar 

  34. Nicot, F.: Constitutive modelling of a snow cover with a change in scale. Eur. J. Mech. A/Solids 22, 325–340 (2003a)

    Article  ADS  Google Scholar 

  35. Nicot, F.: (trad auto) Multiscale modelling of geomaterials. Contribution to the treatment of natural risks. Habilitation à diriger des recherches. Habilitation à diriger des recherches,INPG Grenoble (2003b)

  36. Nicot, F.: Constitutive modelling of snow as a cohesive-granular material. Granul. Matter 6, 47–60 (2004a)

    Article  Google Scholar 

  37. Nicot, F.: From constitutive modelling of a snow cover to the design of flexible protective structures part i—mechanical modelling. Int. J. Solids Struct. 41, 3317–3337 (2004b)

    Article  Google Scholar 

  38. Nicot, F.: From constitutive modelling of a snow cover to the design of flexible protective structures part ii—some numerical aspects. Int. J. Solids Struct. 41, 3339–3352 (2004c)

    Article  Google Scholar 

  39. Peinke, I., Hagenmuller, P., Chambon, G., Roulle, J.: Investigation of snow sintering at microstructural scale from micro-penetration tests. Cold Reg. Sci. Technol. 162, 43–55 (2019)

    Article  Google Scholar 

  40. Peters, B., Besseron, X., Estupinan Donoso, A.A., Hoffmann, F., Michael, M., Mahmoudi, A.H.: Application of the extended discrete element method (XDEM) in computer-aided process engineering. CAPE Forum , 12 (2013)

  41. Peters, B., Džiugys, A., Hunsinger, H., Krebs, L.: An approach to qualify the intensity of mixing on a forward acting grate. Chem. Eng. Sci. 60, 1649–1659 (2005)

    Article  Google Scholar 

  42. Peters, B.: Extended discrete element method–wikipedia, the free encyclopedia. (2020). Accessed 19 May 2020 (online)

  43. Petrenko, V., Whitworth, R.: Physics of ice. OUP, Oxford (1999)

    Google Scholar 

  44. Samiei, K., Peters, B., Bolten, M., Frommer, A.: Assessment of the potentials of implicit integration method in discrete element modelling of granular matter. Comput. Chem. Eng. 49, 183–193 (2013)

    Article  Google Scholar 

  45. Schulson, E.M.: The brittle compressive fracture of ice. Acta Metall. Mater. 38, 1963–1976 (1990)

    Article  Google Scholar 

  46. Schulson, E.M.: Brittle failure of ice. Eng. Fract. Mech. 68, 1839–1887 (2001)

    Article  Google Scholar 

  47. Shaw, M., Sata, T.: The plastic behavior of cellular materials. Int. J. Mech. Sci. 8, 469–478 (1966)

    Article  Google Scholar 

  48. Sigrist, C.: Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release (2006)

  49. Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., Lehning, M.: Granulation of snow: from tumbler experiments to discrete element simulations. J. Geophys. Res. Earth Surf. 120, 1107–1126 (2015). https://doi.org/10.1002/2014JF003294

    Article  ADS  Google Scholar 

  50. Szabo, D., Schneebeli, M.: Subsecond sintering of ice. Appl. Phys. Lett. 90, 151916 (2007)

    Article  ADS  Google Scholar 

  51. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  52. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic HPC cluster: the UL experience. In: 2014 international conference on high performance computing simulation (HPCS), pp. 959–967 (2014)

  53. Voitkovsky, K., Bozhinsky, A., Golubev, V., Laptev, M., Zhigulsky, A., Slesarenko, Y.: Creep-induced changes in structure and density of snow. 1974 Snow Mechanics Symposium, pp. 171–179. IAHS Publ, Grindelwald (1975)

  54. Walton, O., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)

    Article  ADS  Google Scholar 

  55. Yong, R.N., Metaxas, I.: Influence of age-hardening and strain-rate on confined compression and shear behaviour of snow. J. Terramech. 22, 37–49 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The presented research project is financed by the National Research Fund of Luxembourg (FNR). Simulations presented in this study were carried out on the High-Performance-Computing facility (HPC) of the University of Luxembourg, see [52].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wendlassida Kabore.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabore, B.W., Peters, B., Michael, M. et al. A discrete element framework for modeling the mechanical behaviour of snow—Part I: Mechanical behaviour and numerical model. Granular Matter 23, 42 (2021). https://doi.org/10.1007/s10035-020-01083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01083-1

Keywords

Navigation