Skip to main content
Log in

Thermal cycling effects on the structure and physical properties of granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Over the past two decades, various investigations have shown that the application of thermal cycles of heating and cooling to granular materials causes permanent densification. However, prior to this study, significant associated effects of thermal cycles on the structural reorganization and physical properties of granular materials remained mostly unknown. To address these elusive aspects, this paper investigates the relationship between the microstructural changes induced by thermal cycling and their influence on the physical properties of granular materials using a multiphysical and multiscale computational approach. Microstructural changes are analyzed using coupled thermo-mechanical discrete element simulations and macroscopic physical properties are upscaled using homogenization. Multiple initial porosities and particle size distributions are investigated for a large number of thermal cycles of varying amplitude. Results demonstrate significant variations in the structure and properties of granular materials. Volumetric densification and fabric anisotropy increase monotonically with the amplitude and number of cycles. Coordination number exhibits a maximum for a critical temperature amplitude established theoretically to correspond to an optimal particle rearrangement. Mechanical stiffness and thermal conductivity increase in anisotropic fashion due to stress relaxation and fabric anisotropy and typically exhibit the most variation at the critical temperature amplitude. Intrinsic permeability to fluid flow decreases isotropically and monotonically with the amplitude and number of thermal cycles due to pore volume reduction. The critical temperature amplitude provides a limit to the thermal energy that can seemingly induce optimal and permanent structural reorganizations, as well as maximum variations of specific physical properties of granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available as Supplemental Material.

References

  1. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523–1531 (1992). https://doi.org/10.1126/science.255.5051.1523

    Article  ADS  Google Scholar 

  2. Callister, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th edn. Wiley, Hoboken (2012)

    Google Scholar 

  3. Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior. Wiley, New York (2005)

    Google Scholar 

  4. Roshankhah, S., Santamarina, J.C.: Engineered granular materials for heat conduction and load transfer in energy geotechnology. Géotech. Lett. 4(2), 145–150 (2014). https://doi.org/10.1680/geolett.14.00001

    Article  Google Scholar 

  5. Yun, T.S., Santamarina, J.C.: Fundamental study of thermal conduction in dry soils. Granul. Matter 10(3), 197–207 (2008). https://doi.org/10.1007/s10035-007-0051-5

    Article  MATH  Google Scholar 

  6. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New York (1972)

    MATH  Google Scholar 

  7. Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-Frict. Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  8. Vaid, Y.P., Negussey, D.: Relative density of pluviated sand samples. Soils Found. 24(2), 101–105 (1984). https://doi.org/10.3208/sandf1972.24.2_101

    Article  Google Scholar 

  9. Knight, J.B., Fandrich, C.G., Lau, C.N., Jaeger, H.M., Nagel, S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E 51(5), 3957–3963 (1995). https://doi.org/10.1103/PhysRevE.51.3957

    Article  ADS  Google Scholar 

  10. Richard, P., Nicodemi, M., Delannay, R., Ribière, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4(2), 121–128 (2005). https://doi.org/10.1038/nmat1300

    Article  ADS  Google Scholar 

  11. Benahmed, N., Canou, J., Dupla, J.-C.: Structure initiale et propriétés de liquéfaction statique d’un sable. C. R. Méc. 332(11), 887–894 (2004). https://doi.org/10.1016/j.crme.2004.07.009

    Article  ADS  MATH  Google Scholar 

  12. Claudin, P., Bouchaud, J.-P.: Static avalanches and giant stress fluctuations in silos. Phys. Rev. Lett. 78(2), 231–234 (1997). https://doi.org/10.1103/PhysRevLett.78.231

    Article  ADS  Google Scholar 

  13. Rotta Loria, A.F., Coulibaly, J.B.: Thermally induced deformation of soils: a critical overview of phenomena, challenges and opportunities. Geomech. Energy Environ. (2020). https://doi.org/10.1016/j.gete.2020.100193

    Article  Google Scholar 

  14. Bonamy, D., Laurent, L., Claudin, P., Bouchaud, J.-P., Daviaud, F.: Electrical conductance of a 2D packing of metallic beads under thermal perturbation. Europhys. Lett. EPL 51(6), 614–620 (2000). https://doi.org/10.1209/epl/i2000-00382-3

    Article  ADS  Google Scholar 

  15. Liu, C., Nagel, S.R.: Sound in sand. Phys. Rev. Lett. 68(15), 2301–2304 (1992). https://doi.org/10.1103/PhysRevLett.68.2301

    Article  ADS  Google Scholar 

  16. Chen, K., et al.: Granular materials: packing grains by thermal cycling. Nature 442(7100), 257 (2006)

    Article  ADS  Google Scholar 

  17. Divoux, T., Gayvallet, H., Géminard, J.-C.: Creep motion of a granular pile induced by thermal cycling. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.101.148303

    Article  Google Scholar 

  18. Slotterback, S., Toiya, M., Goff, L., Douglas, J.F., Losert, W.: Correlation between particle motion and voronoi-cell-shape fluctuations during the compaction of granular matter. Phys. Rev. Lett. 101(25), 258001 (2008). https://doi.org/10.1103/PhysRevLett.101.258001

    Article  ADS  Google Scholar 

  19. Blanc, B., Géminard, J.-C.: Intrinsic creep of a granular column subjected to temperature changes. Phys. Rev. E 88(2), 022201 (2013). https://doi.org/10.1103/PhysRevE.88.022201

    Article  ADS  Google Scholar 

  20. Dreissigacker, V., Müller-Steinhagen, H., Zunft, S.: Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transf. 46(10), 1199–1207 (2010). https://doi.org/10.1007/s00231-010-0684-5

    Article  ADS  Google Scholar 

  21. Percier, B., Divoux, T., Taberlet, N.: Insights on the local dynamics induced by thermal cycling in granular matter. EPL Europhys. Lett. 104(2), 24001 (2013). https://doi.org/10.1209/0295-5075/104/24001

    Article  ADS  Google Scholar 

  22. Sassine, N., Donzé, F.-V., Harthong, B., Bruch, A.: Thermal stress numerical study in granular packed bed storage tank. Granul. Matter (2018). https://doi.org/10.1007/s10035-018-0817-y

    Article  Google Scholar 

  23. Vargas, W.L., McCarthy, J.J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E (2007). https://doi.org/10.1103/physreve.76.041301

    Article  Google Scholar 

  24. Vargas, W.L., McCarthy, J.J.: Heat conduction in granular materials. AIChE J. 47(5), 1052–10590 (2001). https://doi.org/10.1002/aic.690470511

    Article  Google Scholar 

  25. Zhao, S., Zhao, J., Lai, Y.: Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum–discrete coupling approach. Comput. Methods Appl. Mech. Eng. 367, 113100 (2020). https://doi.org/10.1016/j.cma.2020.113100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhao, S., Evans, T.M., Zhou, X., Zhou, S.: Discrete element method investigation on thermally-induced shakedown of granular materials. Granul. Matter (2016). https://doi.org/10.1007/s10035-016-0690-5

    Article  Google Scholar 

  27. Divoux, T., Vassilief, I., Gayvallet, H., Géminard, J.-C.: Aging of a granular pile induced by thermal cycling. In: AIP Conference Proceedings, Golden (Colorado), pp. 473–476 (2009). https://doi.org/10.1063/1.3179965

  28. Gierszewski, P., Donne, M.D., Kawamura, H., Tillack, M.: Ceramic pebble bed development for fusion blankets. Fusion Eng. Des. 27, 167–178 (1995). https://doi.org/10.1016/0920-3796(95)90124-8

    Article  Google Scholar 

  29. Laloui, L., Rotta Loria, A.F.: Analysis and Design of Energy Geostructures: Theoretical Essentials and Practical Application. Academic Press, Cambridge (2019)

    Google Scholar 

  30. Sabihuddin, S., Kiprakis, A., Mueller, M.: A numerical and graphical review of energy storage technologies. Energies 8(1), 172–216 (2014). https://doi.org/10.3390/en8010172

    Article  Google Scholar 

  31. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  32. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings I Assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007). https://doi.org/10.1103/physreve.76.061302

    Article  ADS  MathSciNet  Google Scholar 

  33. Radjaï, F., Dubois, F. (eds.): Discrete-Element Modeling of Granular Materials. Hoboken/London, ISTE/Wiley, NJ (2011)

  34. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008). https://doi.org/10.1007/s10035-008-0099-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Daphalapurkar, N.P., Wang, F., Fu, B., Lu, H., Komanduri, R.: Determination of mechanical properties of sand grains by nanoindentation. Exp. Mech. 51(5), 719–728 (2011). https://doi.org/10.1007/s11340-010-9373-z

    Article  Google Scholar 

  36. Sandeep, C.S., Senetakis, K.: Grain-scale mechanics of quartz sand under normal and tangential loading. Tribol. Int. 117, 261–271 (2018). https://doi.org/10.1016/j.triboint.2017.09.014

    Article  Google Scholar 

  37. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  38. Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. 71(3), 350 (2004). https://doi.org/10.1115/1.1753266

    Article  ADS  MATH  Google Scholar 

  39. Lopera Perez, J.C., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found. 56(1), 152–159 (2016). https://doi.org/10.1016/j.sandf.2016.01.013

    Article  Google Scholar 

  40. Billaux, D., Cundall, P.: Simulation des géomatériaux par la méthode des éléments Lagrangiens. Rev. Fr. Géotechnique 63, 9–21 (1993). https://doi.org/10.1051/geotech/1993063009

    Article  Google Scholar 

  41. Ng, T.-T.: Input parameters of discrete element methods. J. Eng. Mech. 132(7), 723–729 (2006). https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723)

    Article  Google Scholar 

  42. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. II. Compression and pressure cycles. Phys. Rev. E 76(6), 0613030 (2007). https://doi.org/10.1103/physreve.76.061303

    Article  MathSciNet  Google Scholar 

  43. Ken-Ichi, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984). https://doi.org/10.1016/0020-7225(84)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  44. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009). https://doi.org/10.1007/s10035-009-0138-2

    Article  MATH  Google Scholar 

  45. Lu, Z., Abdou, M., Ying, A.: 3D micromechanical modeling of packed beds. J. Nucl. Mater. 299(2), 101–110 (2001). https://doi.org/10.1016/S0022-3115(01)00690-0

    Article  ADS  Google Scholar 

  46. Johnson, W.H., Parsons, W.H.: Thermal expansion of concrete aggregate materials. J. Res. Natl. Bur. Stand. 32, 101–126 (1944)

    Article  Google Scholar 

  47. Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Z. Vereines Dtsch. Ingenieure 39, 1045–1049 (1895)

    Google Scholar 

  48. Chen, K., Harris, A., Draskovic, J., Schiffer, P.: Granular fragility under thermal cycles. Granul. Matter 11(4), 237–242 (2009). https://doi.org/10.1007/s10035-009-0141-7

    Article  Google Scholar 

  49. Iliev, P.S., Giacomazzi, E., Wittel, F.K., Mendoza, M., Haselbacher, A., Herrmann, H.J.: Behavior of confined granular beds under cyclic thermal loading. Granul. Matter 21(3), 59 (2019). https://doi.org/10.1007/s10035-019-0914-6

    Article  Google Scholar 

  50. Nadimi, S., Fonseca, J.: Enhancing soil sample preparation by thermal cycling. Géotechnique 66(11), 953–958 (2016). https://doi.org/10.1680/jgeot.15.T.033

    Article  Google Scholar 

  51. Ng, C.W.W., Wang, S.H., Zhou, C.: Volume change behaviour of saturated sand under thermal cycles. Géotechnique Lett. 6(2), 124–131 (2016)

    Article  Google Scholar 

  52. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979). https://doi.org/10.1016/0309-1708(79)90025-3

    Article  ADS  Google Scholar 

  53. Birkholz, O., Gan, Y., Kamlah, M.: Modeling the effective conductivity of the solid and the pore phase in granular materials using resistor networks. Powder Technol. 351, 54–65 (2019). https://doi.org/10.1016/j.powtec.2019.04.005

    Article  Google Scholar 

  54. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987). https://doi.org/10.1137/0216006

    Article  MathSciNet  MATH  Google Scholar 

  55. Liao, C.-L., Chan, T.-C.: A generalized constitutive relation for a randomly packed particle assembly. Comput. Geotech. 20(3–4), 345–363 (1997). https://doi.org/10.1016/S0266-352X(97)00010-4

    Article  Google Scholar 

  56. Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. Math. Phys. Sci. 355(1682), 313–333 (1977). https://doi.org/10.1098/rspa.1977.0100

    Article  ADS  Google Scholar 

  57. Fei, W., Narsilio, G.A., van der Linden, J.H., Disfani, M.M.: Network analysis of heat transfer in sphere packings. Powder Technol. 362, 790–804 (2020). https://doi.org/10.1016/j.powtec.2019.11.123

    Article  Google Scholar 

  58. Yun, T.S., Evans, T.M.: Three-dimensional random network model for thermal conductivity in particulate materials. Comput. Geotech. 37(7–8), 991–998 (2010). https://doi.org/10.1016/j.compgeo.2010.08.007

    Article  Google Scholar 

  59. Vargas, W.L., McCarthy, J.J.: Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics simulation. Int. J. Heat Mass Transf. 45(24), 4847–4856 (2002). https://doi.org/10.1016/S0017-9310(02)00175-8

    Article  MATH  Google Scholar 

  60. Gray, W.G., O’Neill, K.: On the general equations for flow in porous media and their reduction to Darcy’s law. Water Resour. Res. 12(2), 148–154 (1976). https://doi.org/10.1029/WR012i002p00148

    Article  ADS  Google Scholar 

  61. Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Media 94(2), 595–615 (2012). https://doi.org/10.1007/s11242-012-0057-2

    Article  MathSciNet  Google Scholar 

  62. Smilauer, V. et al.: Yade Documentation, 2nd ed. Zenodo (2015)

  63. Marzougui, D., Chareyre, B., Chauchat, J.: Numerical simulations of dense suspensions rheology using a DEM-fluid coupled model. In: 3rd International Conference on Particle-Based Methods Fundamentals and Applications, Particles 2013, Stuttgart, Germany, pp. 124–132 (2013)

  64. ASTM D4253: Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM International (2016). https://doi.org/10.1520/d4253-16e01

  65. ASTM D4254: Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM International (2016). https://doi.org/10.1520/d4254-16

  66. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979). https://doi.org/10.1080/01621459.1979.10481038

    Article  MathSciNet  MATH  Google Scholar 

  67. van der Linden, J.H., Tordesillas, A., Narsilio, G.A.: Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport. Sci. Rep. 9(1), 18231 (2019). https://doi.org/10.1038/s41598-019-54699-6

    Article  ADS  Google Scholar 

  68. Pasten, C., Santamarina, J.C.: Thermally induced long-term displacement of thermoactive piles. J. Geotech. Geoenviron. Eng. 140(5), 06014003 (2014)

    Article  Google Scholar 

  69. Suryatriyastuti, M., Mroueh, H., Burlon, S.: A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput. Geotech. 55(1), 378–391 (2014)

    Article  Google Scholar 

  70. Ng, C.W.W., Ma, Q.J., Gunawan, A.: Horizontal stress change of energy piles subjected to thermal cycles in sand. Comput. Geotech. 78, 54–61 (2016)

    Article  Google Scholar 

  71. Saggu, R., Chakraborty, T.: Cyclic thermo-mechanical analysis of energy piles in sand. Geotech. Geol. Eng. 33(1), 1–22 (2015)

    Article  Google Scholar 

  72. Sutman, M., Olgun, C.G., Laloui, L.: Cyclic load-transfer approach for the analysis of energy piles. J. Geotech. Geoenviron. Eng. 145(1), 04018101 (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001992

    Article  Google Scholar 

  73. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A., Pender, M.J.: Thermal conductivity of soft Bangkok clay from laboratory and field measurements. Eng. Geol. 105(3–4), 211–219 (2009). https://doi.org/10.1016/j.enggeo.2009.02.008

    Article  Google Scholar 

  74. Pothiraksanon, C., Bergado, D.T., Abuel-Naga, H.M.: Full-scale embankment consolidation test using prefabricated vertical thermal drains. Soils Found. 50(5), 599–608 (2010). https://doi.org/10.3208/sandf.50.599

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part through the computational resources and staff contributions provided for the Quest high performance computing facility at Northwestern University which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. The authors would also like to thankfully acknowledge Prof. Bruno Chareyre from the 3SR Laboratory in Grenoble, France, for insightful discussions and guidance on the Pore-scale Finite Volume Model and its implementation in the Yade-DEM software.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JBC: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Roles/Writing—original draft, Writing—review and editing. MS: Data curation, Investigation, Methodology, Software, Validation, Roles/Writing—original draft, Writing—review and editing. AFL: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing—review and editing.

Corresponding author

Correspondence to Jibril B. Coulibaly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 5654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulibaly, J.B., Shah, M. & Rotta Loria, A.F. Thermal cycling effects on the structure and physical properties of granular materials. Granular Matter 22, 80 (2020). https://doi.org/10.1007/s10035-020-01054-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01054-6

Keywords

Navigation