Skip to main content
Log in

Particle-shape induced radial segregation in rotating cylinders

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this work we assess whether particle shape can induce radial segregation in a rotating cylinder. To this end, mixtures of spheres and non-spherical particles of equal-volume were modelled in a discrete element modelling framework. We could observe that particle-shape (alone) can induce radial segregation with the non-spherical particles accumulating in the centre of the cylinder. To probe the underlying segregation mechanism, a large number of particle trajectories and orientations were analysed. We observed that non-spherical particles, when segregating towards the centre of the bed, did not necessarily orientate themselves such that their projected area (in the sinking direction) was smaller than that of spheres. Instead, we found that there was a high probability that the avalanching, non-spherical particles are orientated such that their projected area in the direction perpendicular to the bed surface is maximal. Hence, particle-shape induced segregation cannot be explained by the conventional percolation mechanism. Instead, we propose that shape-induced segregation originates from the lower mobility of the non-spherical particles than spheres. We explain the lower mobility of non-spherical particles by their larger radius of gyration than equal-volume spheres, leading to an increased number of collisions and thus a higher rate of kinetic energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    ADS  Google Scholar 

  3. Seiden, G., Thomas, P.J.: Complexity, segregation, and pattern formation in rotating-drum flows. Rev. Mod. Phys. 83, 1323–1365 (2011)

    ADS  Google Scholar 

  4. Richard, P., Taberlet, N.: Recent advances in DEM simulations of grains in a rotating drum. Soft Matter 4, 1345–1348 (2008)

    ADS  Google Scholar 

  5. Hill, K.M., Khakhar, D.V., Gilchrist, J.F., McCarthy, J.J., Ottino, J.M.: Segregation-driven organization in chaotic granular flows. Proc. Natl. Acad. Sci. U.S.A. 96, 11701–11706 (1999)

    ADS  Google Scholar 

  6. Christov, I.C., Stone, H.A.: Resolving a paradox of anomalous scalings in the diffusion of granular materials. Proc. Natl. Acad. Sci. U.S.A. 109, 16012–16017 (2012)

    ADS  Google Scholar 

  7. Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M.: Modelling size segregation of granular materials: the role of segregation, advection and diffusion. J. Fluid Mech. 741, 252–279 (2014)

    ADS  MathSciNet  Google Scholar 

  8. Meier, S.W., Melani Barreiro, D.A., Ottino, J.M., Lueptow, R.M.: Coarsening of granular segregation patterns in quasi-two-dimensional tumblers. Nat. Phys. 4, 244–248 (2008)

    Google Scholar 

  9. Jing, L., Kwok, C.Y., Leung, Y.F.: Micromechanical origin of particle size segregation. Phys. Rev. Lett. 118, 118001 (2017)

    ADS  Google Scholar 

  10. Gillemot, K.A., Somfai, E., Börzsönyi, T.: Shear-driven segregation of dry granular materials with different friction coefficients. Soft Matter 13, 415–420 (2017)

    ADS  Google Scholar 

  11. Balista, J.A.F.: Axial segregation of granular mixtures as the rotational stabilization of the radial core. Granul. Matter 19, 39 (2017)

    Google Scholar 

  12. González, S., Windows-Yule, C.R.K., Luding, S., Parker, D.J., Thornton, A.R.: Forced axial segregation in axially inhomogeneous rotating systems. Phys. Rev. E 92, 022202 (2015)

    ADS  Google Scholar 

  13. Windows-Yule, C.R.K., Scheper, B.J., van der Horn, A.J., Hainsworth, N., Saunders, J., Parker, D.J., Thornton, A.R.: Understanding and exploiting competing segregation mechanisms in horizontally rotated granular media. New J. Phys. 18, 023013 (2016)

    ADS  Google Scholar 

  14. Liu, P.Y., Yang, R.Y., Yu, A.B.: The effect of liquids on radial segregation of granular mixtures in rotating drums. Granul. Matter 15, 427–436 (2013)

    Google Scholar 

  15. Arntz, M.M.H.D., Beeftink, H.H., den Otter, W.K., Briels, W.J., Boom, R.M.: Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE J. 60, 50–59 (2014)

    Google Scholar 

  16. Pereira, G.G., Cleary, P.W.: Radial segregation of multi-component granular media in a rotating tumbler. Granul. Matter 15, 705–724 (2013)

    Google Scholar 

  17. Arntz, M.M.H.D., den Otter, W.K., Briels, W.J., Bussmann, P.J.T., Beeftink, H.H., Boom, R.M.: Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54, 3133–3146 (2008)

    Google Scholar 

  18. Pereira, G.G., Sinnott, M.D., Cleary, P.W., Liffman, K., Metcalfe, G., Šutalo, I.D.: Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders. Granul. Matter 13, 53–74 (2011)

    Google Scholar 

  19. Börzsönyi, T., Stannarius, R.: Granular materials composed of shape-anisotropic grains. Soft Matter 9, 7401–7418 (2013)

    ADS  Google Scholar 

  20. Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Google Scholar 

  21. Guo, Y., Curtis, J.S.: Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47, 21–46 (2015)

    ADS  MathSciNet  Google Scholar 

  22. Pereira, G.G., Pucilowski, S., Liffman, K., Cleary, P.W.: Streak patterns in binary granular media in a rotating drum. Appl. Math. Model. 35, 1638–1646 (2011)

    MATH  Google Scholar 

  23. Pereira, G.G., Tran, N., Cleary, P.W.: Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul. Matter 5, 711–732 (2014)

    Google Scholar 

  24. Hill, K.M., Gioia, G., Amaravadi, D.: Radial segregation patterns in rotating granular mixtures: waviness selection. Phys. Rev. Lett. 93, 224301 (2004)

    ADS  Google Scholar 

  25. Schlick, C.P., Yi, Fan, Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M.: Granular segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765, 632–652 (2015)

    ADS  MathSciNet  Google Scholar 

  26. Dubé, O., Alizadeh, E., Chaouki, J., Bertrand, F.: Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci. 101, 486–502 (2013)

    Google Scholar 

  27. Pereira, G.G., Cleary, P.W.: Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul. Matter 19, 23 (2017)

    Google Scholar 

  28. Lu, G., Third, J.R., Müller, C.R.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78, 226–235 (2012)

    Google Scholar 

  29. Lu, G., Third, J.R., Müller, C.R.: The parameters governing the coefficient of dispersion of cubes in rotating cylinders. Granul. Matter 19, 12 (2017)

    Google Scholar 

  30. Lu, G., Third, J.R., Müller, C.R.: Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder. Particuology 12, 44–53 (2013)

    Google Scholar 

  31. Dury, C.M., Ristow, G.H., Moss, J.L., Nakagawa, M.: Boundary effects on the angle of repose in rotating cylinders. Phys. Rev. Lett. 57, 4491–4497 (1998)

    ADS  Google Scholar 

  32. Cleary, P.W., Sinnott, M.D., Morrison, R.D.: DEM prediction of particle flows in grinding processes. Int. J. Numer. Methods Fluids 58, 319–353 (2008)

    ADS  MATH  Google Scholar 

  33. Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59, 425–435 (2004)

    Google Scholar 

  34. Kremmer, M., Favier, J.F.: Calculating rotational motion in discrete element modelling of arbitrary shaped model objects. Eng. Comput. 17, 703–714 (2000)

    MATH  Google Scholar 

  35. Mellmann, J.: The transverse motion of solids in rotating cylinders—forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001)

    Google Scholar 

  36. Chou, S.H., Liao, C.C., Hsiau, S.S.: The effect of interstitial fluid viscosity on particle segregation in a slurry rotating drum. Phys. Fluids 23, 083301 (2011)

    ADS  Google Scholar 

  37. Mandal, S., Khakhar, D.V.: An experimental study of the flow of nonspherical grains in a rotating cylinder. AIChE J. 63, 4307–4315 (2017)

    Google Scholar 

  38. Rasouli, M., Dubé, O., Bertrand, F., Chaouki, J.: Investigating the dynamics of cylindrical particles in a rotating drum using multiple radioactive particle tracking. AIChE J. 62, 2622–2634 (2016)

    Google Scholar 

  39. Third, J.R., Scott, D.M., Scott, S.A., Müller, C.R.: Tangential velocity profiles of granular material within horizontal rotating cylinders modelled using the DEM. Granul. Matter 12, 587–595 (2010)

    MATH  Google Scholar 

  40. Caulkin, R., Jia, X., Fairweather, E., Williams, R.A.: Geometric aspects of particle segregation. Phys. Rev. E 81, 051302 (2010)

    ADS  Google Scholar 

  41. Alam, M., Luding, S.: Energy nonequipartition, rheology, and microstructure in sheared bidisperse granular mixtures. Phys. Fluids 17, 063303 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Roskilly, S.J., Colbourn, E.A., Alli, O., Williams, D., Paul, K.A., Welfare, E.H., Trusty, P.A.: Investigating the effect of shape on particle segregation using a Monte Carlo simulation. Powder Technol. 203, 211–222 (2010)

    Google Scholar 

  43. Windows-Yule, C.R.K., Maddox, B., Parker, D.J.: The role of rotational inertia in the dynamics of vibrofluidised granular gas. Europhys. Lett. 108, 58006 (2014)

    ADS  Google Scholar 

  44. Windows-Yule, C.R.K., Douglas, G.J.M., Parker, D.J.: Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems. Phys. Rev. E 91, 032205 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Swiss National Science Foundation (20020_281692) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Müller, C.R. Particle-shape induced radial segregation in rotating cylinders. Granular Matter 22, 50 (2020). https://doi.org/10.1007/s10035-020-01020-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01020-2

Keywords

Navigation