Skip to main content
Log in

Pressure-dependent grain dissolution using discrete element simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Pressure solution-precipitation is a diagenetic process often involved in compaction, hardening, creep and healing. This study explores the evolution of pressure-dependent mineral dissolution using the discrete element method where grains are gradually contracted in proportion to the total normal force they carry. Under zero lateral strain and constant vertical stress boundary conditions, contact forces homogenize during the early stages of dissolution, there is a minor increase in coordination number and the global porosity decreases (even though there is no reprecipitation in these simulations). There is a transient drop in the lateral stress, shear bands start to emerge as the horizontal stress reaches a minimum value. The porosity is higher and the coordination number is lower within shear bands than in the surrounding soil wedges; furthermore, interparticle forces tend to homogenize within wedges, while marked force chains develop within shear bands. On the other hand, there is no shear localization during pressure solution simulations under isotropic stress boundary conditions. Regardless of the boundary conditions, the initially uniform grain size distribution evolves towards a unimodal distribution; improved particle grading facilitates the global reduction in porosity and the associated increase in coordination number. The emergence of shear discontinuities during pressure solution under zero lateral strains may explain the non-tectonic origin of polygonal fault systems observed in marine sediments and lacustrine deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alley, W.M., Healy, R.W., Labaugh, J.W., Reilly, T.E.: Flow and storage in groundwater systems. Science 296, 1985–1990 (2002)

    ADS  Google Scholar 

  2. Angevine, C.L., Turcotte, D.L.: Porosity reduction by pressure solution—a theoretical-model for quartz arenites. Geol. Soc. Am. Bull. 94, 1129–1134 (1983)

    ADS  Google Scholar 

  3. Angevine, C.L., Turcotte, D.L., Furnish, M.D.: Pressure solution lithification as a mechanism for the stick-slip behavior of faults. Tectonics 1, 151–160 (1982)

    ADS  Google Scholar 

  4. Bagi, K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7, 31–43 (2005)

    MATH  Google Scholar 

  5. Carrio-Schaffhauser, E., Raynaud, S., Latière, H.J., Mazerolle, F.: Propagation and localization of stylolites in limestones. Geol. Soc. Lond. Spec. Publ. 54, 193–199 (1990)

    ADS  Google Scholar 

  6. Cartwright, J.: Diagenetically induced shear failure of fine-grained sediments and the development of polygonal fault systems. Mar. Pet. Geol. 28, 1593–1610 (2011)

    Google Scholar 

  7. Cartwright, J., James, D., Bolton, A.: The genesis of polygonal fault systems; a review. Geol. Soc. Lond. Spec. Publ. 216, 223–243 (2003)

    ADS  Google Scholar 

  8. Cha, M., Santamarina, J.C.: Predissolution and postdissolution penetration resistance. J. Geotech. Geoenviron. Eng. 139, 2193–2200 (2013)

    Google Scholar 

  9. Cha, M., Santamarina, J.C.: Dissolution of randomly distributed soluble grains: post dissolution k0-loading and shear. Géotechnique 64, 828–836 (2014)

    Google Scholar 

  10. Cha, M., Santamarina, J.C.: Effect of dissolution on the load-settlement behavior of shallow foundations. Can. Geotech. J. 53, 1353–1357 (2016)

    Google Scholar 

  11. Cha, M., Santamarina, J.C.: Hydro-chemo-mechanical coupling in sediments: localized mineral dissolution. Geomech. Energy Environ. 7, 1–9 (2016)

    Google Scholar 

  12. Cha, M., Santamarina, J.C.: Localized dissolution in sediments under stress. Granul. Matter 21, 79 (2019)

    Google Scholar 

  13. Croize, D., Bjorlykke, K., Jahren, J., Renard, F.: Experimental mechanical and chemical compaction of carbonate sand. J. Geophys. Res. Solid Earth 115, B11204 (2010)

    ADS  Google Scholar 

  14. Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Google Scholar 

  15. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    ADS  Google Scholar 

  16. de Boer, R.B.: On the thermodynamics of pressure solution—interaction between chemical and mechanical forces. Geochim. Cosmochim. Acta 41, 249–256 (1977)

    ADS  Google Scholar 

  17. de Boer, R.B., Nagtegaal, P.J.C., Duyvis, E.M.: Pressure solution experiments on quartz sand. Geochim. Cosmochim. Acta 41, 257–264 (1977)

    ADS  Google Scholar 

  18. de Bono, J.P., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter 16, 551–562 (2014)

    Google Scholar 

  19. de Meer, S., Spiers, C., Peach, C.: Pressure solution creep in gypsum: evidence for precipitation reaction control. Phys. Chem. Earth 22, 33–37 (1997)

    Google Scholar 

  20. Dewers, T., Hajash, A.: Rate laws for water-assisted compaction and stress-induced water–rock interaction in sandstones. J. Geophys. Res. Solid Earth 100, 13093–13112 (1995)

    Google Scholar 

  21. Durney, D.W.: Solution-transfer, an important geological deformation mechanism. Nature 235, 315–317 (1972)

    ADS  Google Scholar 

  22. Elliott, D.: Diffusion flow laws in metamorphic rocks. Geol. Soc. Am. Bull. 84, 2645–2664 (1973)

    ADS  Google Scholar 

  23. Etheridge, M.A., Wall, V.J., Cox, S.F., Vernon, R.H.: High fluid pressures during regional metamorphism and deformation: implications for mass-transport and deformation mechanisms. J. Geophys. Res. 89, 4344–4358 (1984)

    ADS  Google Scholar 

  24. Fam, M.A., Cascante, G., Dusseault, M.B.: Large and small strain properties of sands subjected to local void increase. J. Geotech. Geoenviron. Eng. 128, 1018–1025 (2002)

    Google Scholar 

  25. Fowler, A.C., Yang, X.S.: Pressure solution and viscous compaction in sedimentary basins. J. Geophys. Res. Solid Earth 104, 12989–12997 (1999)

    Google Scholar 

  26. Garven, G.: Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth Planet. Sci. 23, 89–117 (1995)

    ADS  Google Scholar 

  27. Gratier, J.P., Guiguet, R., Renard, F., Jenatton, L., Bernard, D.: A pressure solution creep law for quartz from indentation experiments. J. Geophys. Res. Solid Earth 114, B03403 (2009)

    ADS  Google Scholar 

  28. Groshong, R.H.: Strain, fractures, and pressure solution in natural single-layer folds. Geol. Soc. Am. Bull. 86, 1363–1376 (1975)

    ADS  Google Scholar 

  29. Hellmann, R., Gratier, J.P., Chen, T.: Mineral-water interactions and stress: pressure solution of halite aggregates. In: Arehart, G., Hulston, J. (eds.) Water–Rock Interaction, pp. 777–780. Balkema, Rotterdam (1998)

    Google Scholar 

  30. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Google Scholar 

  31. Kuhn, M.R., Mitchell, J.K.: New perspectives on soil-creep. J. Geotech. Eng. ASCE 119, 507–524 (1993)

    Google Scholar 

  32. Lade, P.V.: Instability, shear banding, and failure in granular materials. Int. J. Solids Struct. 39, 3337–3357 (2002)

    Google Scholar 

  33. Lawrence, G.W.M., Cartwright, J.A.: The initiation of sliding on the mid Norway margin in the Møre Basin. Mar. Geol. 259, 21–35 (2009)

    ADS  Google Scholar 

  34. Lehner, F.K.: A model for intergranular pressure solution in open systems. Tectonophysics 245, 153–170 (1995)

    ADS  Google Scholar 

  35. Marone, C., Scholz, C.: Particle-size distribution and microstructures within simulated fault gouge. J. Struct. Geol. 11, 799–814 (1989)

    ADS  Google Scholar 

  36. McDowell, G.R., Khan, J.J.: Creep of granular materials. Granul. Matter 5, 115–120 (2003)

    Google Scholar 

  37. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Google Scholar 

  38. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granul. Matter 12, 527–541 (2010)

    MATH  Google Scholar 

  39. Niemeijer, A., Elsworth, D., Marone, C.: Significant effect of grain size distribution on compaction rates in granular aggregates. Earth Planet. Sci. Lett. 284, 386–391 (2009)

    ADS  Google Scholar 

  40. Niemeijer, A., Marone, C., Elsworth, D.: Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments. J. Geophys. Res. Solid Earth 113, B04204 (2008)

    ADS  Google Scholar 

  41. Niemeijer, A., Spiers, C.J., Bos, B.: Compaction creep of quartz sand at 400–600°C: experimental evidence for dissolution-controlled pressure solution. Earth Planet. Sci. Lett. 195, 261–275 (2002)

    ADS  Google Scholar 

  42. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Taylor & Francis, New York (2011)

    Google Scholar 

  43. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)

    Google Scholar 

  44. Park, W.C., Schot, E.H.: Stylolites: their nature and origin. J. Sediment. Res. 38, 175–191 (1968)

    Google Scholar 

  45. Raj, R.: Creep in polycrystalline aggregates by matter transport through a liquid-phase. J. Geophys. Res. 87, 4731–4739 (1982)

    ADS  Google Scholar 

  46. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular-materials. Geotechnique 39, 601–614 (1989)

    Google Scholar 

  47. Rudnicki, J.W., Rice, J.R.: Conditions for localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)

    ADS  Google Scholar 

  48. Rutter, E.H.: Pressure solution in nature, theory and experiment. J. Geol. Soc. 140, 725–740 (1983)

    ADS  Google Scholar 

  49. Shimizu, I.: Kinetics of pressure solution creep in quartz—theoretical considerations. Tectonophysics 245, 121–134 (1995)

    ADS  Google Scholar 

  50. Shin, H., Santamarina, J.C.: Mineral dissolution and the evolution of k0. J. Geotech. Geoenviron. Eng. 135, 1141–1147 (2009)

    Google Scholar 

  51. Shin, H., Santamarina, J.C., Cartwright, J.A.: Contraction-driven shear failure in compacting uncemented sediments. Geology 36, 931–934 (2008)

    ADS  Google Scholar 

  52. Shin, H., Santamarina, J.C., Cartwright, J.A.: Displacement field in contraction-driven faults. J. Geophys. Res. Solid Earth 115, B07408 (2010)

    ADS  Google Scholar 

  53. Sibson, R.H.: Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet. Sci. 14, 149–175 (1986)

    ADS  MathSciNet  Google Scholar 

  54. Spiers, C., Schutjens, P., Brzesowsky, R., Peach, C., Liezenberg, J., Zwart, H.: Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geol. Soc. Lond. Spec. Publ. 54, 215–227 (1990)

    ADS  Google Scholar 

  55. Sprunt, E.S., Nur, A.: Destruction of porosity through pressure solution. Geophysics 42, 726–741 (1977)

    ADS  Google Scholar 

  56. Tada, R., Siever, R.: Pressure solution during diagenesis. Annu. Rev. Earth Planet. Sci. 17, 89–118 (1989)

    ADS  Google Scholar 

  57. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley-Interscience, Hoboken (1996)

    Google Scholar 

  58. Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.P., Ebner, M., Baud, P., Rolland, A., Renard, F.: Stylolites: a review. J. Struct. Geol. 114, 163–195 (2018)

    ADS  Google Scholar 

  59. Tran, M.K., Shin, H., Byun, Y.-H., Lee, J.-S.: Mineral dissolution effects on mechanical strength. Eng. Geol. 125, 26–34 (2012)

    Google Scholar 

  60. Truong, Q.H., Eom, Y.H., Lee, J.S.: Stiffness characteristics of soluble mixtures. Géotechnique 60, 293–297 (2010)

    Google Scholar 

  61. Visser, H., Spiers, C., Hangx, S.: Effects of interfacial energy on compaction creep by intergranular pressure solution: theory versus experiments on a rock analog (NaNO3). J. Geophys. Res. Solid Earth 117, B11211 (2012)

    ADS  Google Scholar 

  62. Yasuhara, H., Marone, C., Elsworth, D.: Fault zone restrengthening and frictional healing: the role of pressure solution. J. Geophys. Res. Solid Earth 110, B06310 (2005)

    ADS  Google Scholar 

  63. Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z., Chang, X.: DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granul. Matter 19, 25 (2017)

    Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the Department of Energy Savannah River Operations Office, the Goizueta Foundation and the KAUST endowment. The authors are grateful to the anonymous reviewers for insightful comments. G. Abelskamp edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsu Cha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (AVI 22559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, M., Santamarina, J.C. Pressure-dependent grain dissolution using discrete element simulations. Granular Matter 21, 101 (2019). https://doi.org/10.1007/s10035-019-0960-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0960-0

Keywords

Navigation