Skip to main content
Log in

Exploring the influence of sphericity on the mechanical behaviors of ballast particles subjected to direct shear

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

To quantitatively evaluate the influence of shape on the mechanical behaviors of ballast, a series of 2D direct shear simulations were conducted on particles with different sphericities. The particle contours were obtained from the scanning images of 40 ballast particles, based on which the irregular-shaped particles were precisely reconstructed by clumps in the discrete element models. According to the sphericity, five assemblies were prepared for the direct shear simulation. Higher shear strength, vertical relative displacement and apparent angle of shear resistance were observed in assemblies consisting of low-sphericity particles. To explore the mechanism of macro-mechanical behaviors, an in-depth analysis of the mesoscopic responses was conducted. Two parameters were adopted to evaluate the anisotropy of the contact force distribution observed clearly in all samples and stronger anisotropy was found in samples with low-sphericity particles. The translational and rotational displacements of particles were also analyzed. Larger vertical displacements and less rotations were observed in samples with low-sphericity particles. The results suggest that particles with diverse shapes can produce varying particle interlock states and moving behaviors, hence influence the macro-mechanical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C.: Behavior of geogrid-reinforced ballast under various levels of fouling. Geotext. Geomembr. 29(3), 313–322 (2011). https://doi.org/10.1016/j.geotexmem.2011.01.015

    Article  Google Scholar 

  2. Chen, C., Mcdowell, G.R., Thom, N.H.: Investigating geogrid-reinforced ballast: experimental pull-out tests and discrete element modelling. Soils Found. 54(1), 1–11 (2014). https://doi.org/10.1016/j.sandf.2013.12.001

    Article  Google Scholar 

  3. Indraratna, B., Hussaini, S.K.K., Vinod, J.S.: The lateral displacement response of geogrid-reinforced ballast under cyclic loading. Geotext. Geomembr. 39(8), 20–29 (2013). https://doi.org/10.1016/j.geotexmem.2013.07.007

    Article  Google Scholar 

  4. Derakhshani, S.M., Schott, D.L., Lodewijks, G.: Micro-macro properties of quartz sand: experimental investigation and DEM simulation. Powder Technol. 269, 127–138 (2015). https://doi.org/10.1016/j.powtec.2014.08.072

    Article  Google Scholar 

  5. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199–2216 (2014). https://doi.org/10.1007/s00707-014-1127-z

    Article  MATH  Google Scholar 

  6. Cundall, P., Strack, O.: Discrete numerical model for granular assemblies. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 29(1), 47–65 (1979). https://doi.org/10.1016/0148-9062(79)91211-7

    Article  Google Scholar 

  7. Miao, C.X., Zheng, J.J., Zhang, R.J., Cui, L.: DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape. Comput. Geotech. 81, 249–261 (2017). https://doi.org/10.1016/j.compgeo.2016.08.028

    Article  Google Scholar 

  8. Ferellec, J.F., Mcdowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). https://doi.org/10.1007/s10035-010-0205-8

    Article  MATH  Google Scholar 

  9. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Vinod, J.S.: Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation. Int. J. Geomech. 14(1), 34–44 (2014). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264

    Article  Google Scholar 

  10. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13(4), 417–428 (2011). https://doi.org/10.1007/s10035-010-0239-y

    Article  Google Scholar 

  11. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69 (2006). https://doi.org/10.1007/s10035-006-0021-3

    Article  Google Scholar 

  12. Peña, A.A., García-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9(3), 279–291 (2007). https://doi.org/10.1007/s10035-007-0038-2

    Article  MATH  Google Scholar 

  13. Zhao, S., Zhang, N., Zhou, X., Zhang, L.: Particle shape effects on fabric of granular random packing. Powder Technol. 310, 175–186 (2017). https://doi.org/10.1016/j.powtec.2016.12.094

    Article  Google Scholar 

  14. Alonso-Marroquín, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83(1), 14001 (2008). https://doi.org/10.1209/0295-5075/83/14001

    Article  ADS  Google Scholar 

  15. Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009). https://doi.org/10.1007/s10035-009-0139-1

    Article  MATH  Google Scholar 

  16. Ji, S., Sun, S., Yan, Y.: Discrete element modeling of dynamic behaviors of railway ballast under cyclic loading with dilated polyhedra. Int. J. Numer. Anal. Methods Geomech. 41(2), 180–197 (2017). https://doi.org/10.1002/nag.2549

    Article  Google Scholar 

  17. Galindo-Torres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using voronoi-based spheropolyhedra. Phys. Rev. E 81(6 Pt 1), 061303 (2010). https://doi.org/10.1103/PhysRevE.81.061303

    Article  ADS  Google Scholar 

  18. Džiugys, A., Peters, B.: A new approach to detect the contact of two-dimensional elliptical particles. Int. J. Numer. Anal. Methods Geomech. 25(15), 1487–1500 (2001). https://doi.org/10.1002/nag.180

    Article  MATH  Google Scholar 

  19. Baram, R.M., Lind, P.G.: Deposition of general ellipsoidal particles. Phys. Rev. E 85(4 Pt 1), 041301 (2012). https://doi.org/10.1103/PhysRevE.85.041301

    Article  ADS  Google Scholar 

  20. Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991). https://doi.org/10.1016/0266-352X(91)90015-8

    Article  Google Scholar 

  21. Ng, T.T.: Shear strength of assemblies of ellipsoidal particles. Géotechnique 54(10), 659–669 (2004). https://doi.org/10.1680/geot.2004.54.10.659

    Article  Google Scholar 

  22. Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9(2), 115–127 (1992). https://doi.org/10.1108/eb023852

    Article  Google Scholar 

  23. Morris, G., Neethling, S.J., Cilliers, J.J.: A model for investigating the behaviour of non-spherical particles at interfaces. J. Colloid Interface Sci. 354(1), 380–385 (2011). https://doi.org/10.1016/j.jcis.2010.10.039

    Article  ADS  Google Scholar 

  24. Wensrich, C.M., Katterfeld, A., Sugo, D.: Characterisation of the effects of particle shape using a normalised contact eccentricity. Granul. Matter 16(3), 327–337 (2014). https://doi.org/10.1007/s10035-013-0465-1

    Article  Google Scholar 

  25. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in dem. Powder Technol. 217, 409–417 (2012). https://doi.org/10.1016/j.powtec.2011.10.057

    Article  Google Scholar 

  26. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011). https://doi.org/10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  27. Lim, W.L., McDowell, G.R.: Discrete element modelling of railway ballast. Granul. Matter 7(1), 19–29 (2005). https://doi.org/10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  28. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T.: 3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1. J. Aerosp. Eng. 22(1), 15–23 (2009). https://doi.org/10.1061/(ASCE)0893-1321(2009)22:1(15)

    Article  Google Scholar 

  29. Ferellec, J.F., McDowell, G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008). https://doi.org/10.1080/17486020802253992

    Article  Google Scholar 

  30. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016). https://doi.org/10.1016/j.jmps.2016.02.021

    Article  ADS  MathSciNet  Google Scholar 

  31. Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: A geometry-based algorithm for cloning real grains. Granul. Matter 19(2), 47 (2017). https://doi.org/10.1007/s10035-017-0716-7

    Article  Google Scholar 

  32. Medina, D.A., Jerves, A.X.: A geometry-based algorithm for cloning real grains 2.0. Granul. Matter 21(47), 1 (2019). https://doi.org/10.1007/s10035-018-0851-9

    Article  Google Scholar 

  33. de Macedo, R.B., Marshall, J.P., Andrade, J.E.: Granular object morphological generation with genetic algorithms for discrete element simulations. Granul. Matter 20(4), 591 (2018). https://doi.org/10.1007/s10035-018-0845-7

    Article  Google Scholar 

  34. Katagiri, J., Matsushima, T., Yamada, Y.: Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter 12(5), 491–497 (2010). https://doi.org/10.1007/s10035-010-0207-6

    Article  MATH  Google Scholar 

  35. Jo, S.A., Kim, E.K., Cho, G.C., Lee, S.W.: Particle shape and crushing effects on direct shear behavior using DEM. Soils Found. 51(4), 701–712 (2011). https://doi.org/10.3208/sandf.51.701

    Article  Google Scholar 

  36. Matsushima, T., Chang, C.S.: Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter 13(3), 269–276 (2011). https://doi.org/10.1007/s10035-011-0263-6

    Article  Google Scholar 

  37. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996). https://doi.org/10.1680/geot.1996.46.3.529

    Article  Google Scholar 

  38. Anochie-Boateng, J.K., Komba, J.J., Mvelase, G.M.: Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties. Constr. Build. Mater. 43, 389–398 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.062

    Article  Google Scholar 

  39. Paixão, A., Resende, R., Fortunato, E.: Photogrammetry for digital reconstruction of railway ballast particles: a cost-efficient method. Constr. Build. Mater. 191, 963–976 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.048

    Article  Google Scholar 

  40. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 41(3), 310–331 (1932)

    Article  ADS  Google Scholar 

  41. Lees, G.: A new method for determining the angularity of particles. Sedimentology 3(1), 2–21 (1964). https://doi.org/10.1111/j.1365-3091.1964.tb00271.x

    Article  ADS  Google Scholar 

  42. Schwarcz, H.P., Shane, K.C.: Measurement of particle shape by fourier analysis. Sedimentology 13(3–4), 213–231 (2010). https://doi.org/10.1111/j.1365-3091.1969.tb00170.x

    Article  ADS  Google Scholar 

  43. Bowman, E.T., Soga, K., Drummond, W.: Particle shape characterisation using Fourier descriptor analysis. Géotechnique 51(6), 545–554 (2001). https://doi.org/10.1680/geot.2001.51.6.545

    Article  Google Scholar 

  44. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015). https://doi.org/10.1680/geot.14.P.192

    Article  Google Scholar 

  45. Rodriguez, J., Johansson, J., Edeskär, T.: Particle shape determination by two-dimensional image analysis in geotechnical engineering, pp. 207–218. Danish Geotechnical Society (2012)

  46. Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, London (2005)

    Google Scholar 

  47. Sevi, A.F.: Physical modeling of railroad ballast using the parallel gradation scaling technique within the cyclical triaxial framework. Ph.D. Missouri University of Science and Technology, United States - Missouri (2008)

  48. Gao, R., Du, X., Zeng, Y., Li, Y., Yan, J.: A new method to simulate irregular particles by discrete element method. J. Rock Mech. Geotech. Eng. 4(3), 276–281 (2012). https://doi.org/10.3724/SP.J.1235.2012.00276

    Article  Google Scholar 

  49. Garcia, X., Latham, J.P., Xiang, J., Harrison, J.P.: A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Geotechnique 59(9), 779–784 (2009). https://doi.org/10.1680/geot.8.T.037

    Article  Google Scholar 

  50. Taghavi, R.: Automatic clump generation based on mid-surface. In: Continuum and Distinct Element Numerical Modeling in Geomechanics (2011)

  51. Itasca: PFC (Particle Flow Code in 2 and 3 Dimensions), Version 5.0 [User’s Manual]. Itasca Consulting Group, Minneapolis (2014)

  52. Indraratna, B.: Mechanics of Ballasted Rail Tracks: A Geotechnical Perspective. Taylor & Francis, London (2005)

    Google Scholar 

  53. Indraratna, B., Wijewardena, L., Balasubramaniam, A.: Large-scale triaxial testing of greywacke rockfill. Geotechnique 43(1), 37–51 (1993). https://doi.org/10.1680/geot.1993.43.1.37

    Article  Google Scholar 

  54. Masson, S., Martinez, J.: Micromechanical analysis of the shear behavior of a granular material. J. Eng. Mech. 127(10), 1007–1016 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(1007)

    Article  Google Scholar 

  55. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989). https://doi.org/10.1680/geot.1989.39.4.601

    Article  Google Scholar 

  56. Cui, L., O’Sullivan, C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Geotechnique 56(7), 455–468 (2006). https://doi.org/10.1680/geot.56.7.455

    Article  Google Scholar 

  57. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Muhlhaus, H.B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013). https://doi.org/10.1007/s10035-013-0423-y

    Article  Google Scholar 

  58. Tian, J., Liu, E., Jiang, L., Jiang, X., Sun, Y., Xu, R.: Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials. C.R. Mec. 346(6), 460–476 (2018). https://doi.org/10.1016/j.crme.2018.03.006

    Article  ADS  Google Scholar 

  59. Zhang, L., Thornton, C.: A numerical examination of the direct shear test. Geotechnique 57(4), 343–354 (2007). https://doi.org/10.1680/geot.2007.57.4.343

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 51878521, 51178358). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Gao.

Ethics declarations

Conflict of interest

The authors Yangzepeng Liu, Rui Gao and Jing Chen all declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gao, R. & Chen, J. Exploring the influence of sphericity on the mechanical behaviors of ballast particles subjected to direct shear. Granular Matter 21, 94 (2019). https://doi.org/10.1007/s10035-019-0943-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0943-1

Keywords

Navigation