Skip to main content
Log in

Behavior of confined granular beds under cyclic thermal loading

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate the mechanical behavior of a confined granular packing of irregular polyhedral particles under repeated heating and cooling cycles by means of numerical simulations with the non-smooth contact dynamics method. Assuming a homogeneous temperature distribution as well as constant temperature rate, we study the effect of the container shape, and coefficients of thermal expansions on the pressure buildup at the confining walls and the density evolution. We observe that small changes in the opening angle of the confinement can lead to a drastic peak pressure reduction. Furthermore, the displacement fields over several thermal cycles are obtained and we discover the formation of toroidal convection cells inside the granular material. The root mean square of the vorticity is then calculated from the displacement fields and a quadratic dependency on the ratio of thermal expansion coefficients is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, K., Cole, J., Conger, C., Draskovic, J., Lohr, M., Klein, K., Scheidemantel, T., Schiffer, P.: Packing grains by thermal cycling. Nature 442(7100), 257–257 (2006)

    Article  ADS  Google Scholar 

  2. Divoux, T., Gayvallet, H., Géminard, J.C.: Creep motion of a granular pile induced by thermal cycling. Phys. Rev. Lett. 101, 148303 (2008)

    Article  ADS  Google Scholar 

  3. Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M., Steinfeld, A.: Packed-bed thermal storage for concentrated solar power-pilot-scale demonstration and industrial-scale design. Sol. Energy 86(10), 3084–3098 (2012)

    Article  ADS  Google Scholar 

  4. Esence, T., Bruch, A., Molina, S., Stutz, B., Fourmigué, J.F.: A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol. Energy 153, 628–654 (2017)

    Article  ADS  Google Scholar 

  5. Becattini, V., Motmans, T., Zappone, A., Madonna, C., Haselbacher, A., Steinfeld, A.: Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl. Energy 203, 373–389 (2017)

    Article  Google Scholar 

  6. Dreißigacker, V., Müller-Steinhagen, H., Zunft, S.: Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transf. 46(10), 1199–1207 (2010)

    Article  ADS  Google Scholar 

  7. Dreißigacker, V., Zunft, S., Müller-Steinhagen, H.: A thermo-mechanical model of packed-bed storage and experimental validation. Appl. Energy 111, 1120–1125 (2013)

    Article  Google Scholar 

  8. Percier, B., Divoux, T., Taberlet, N.: Insights on the local dynamics induced by thermal cycling in granular matter. EPL 104(2), 24001 (2013)

    Article  ADS  Google Scholar 

  9. Vargas, W.L., McCarthy, J.J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 76, 041301 (2007)

    Article  ADS  Google Scholar 

  10. Sassine, N., Donzé, F.V., Harthong, B., Bruch, A.: Thermal stress numerical study in granular packed bed storage tank. Granul. Matter 20(3), 44 (2018)

    Article  Google Scholar 

  11. Zhao, S., Evans, T.M., Zhou, X., Zhou, S.: Discrete element method investigation on thermally-induced shakedown of granular materials. Granul. Matter 19(1), 11 (2016)

    Article  Google Scholar 

  12. Moreau, J.J.: New computation methods in granular dynamics. In: Powders and Grains 93, p. 227. Balkema, Rotterdam (1993)

  13. Brendel, L., Unger, T., Wolf, D.E.: Contact Dynamics for Beginners, pp. 325–343. Wiley, Hoboken (2005)

    Google Scholar 

  14. Alonso-Marroquín, F., Herrmann, H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92, 054301 (2004)

    Article  ADS  Google Scholar 

  15. Farhadi, S., Zhu, A.Z., Behringer, R.P.: Stress relaxation for granular materials near jamming under cyclic compression. Phys. Rev. Lett. 115, 188001 (2015)

    Article  ADS  Google Scholar 

  16. Iliev, P.S., Wittel, F.K., Herrmann, H.J.: Discrete element modeling of free-standing wire-reinforced jammed granular columns. Comput. Particle Mech. 5(4), 507–516 (2018)

    Article  ADS  Google Scholar 

  17. Iliev, P.S., Wittel, F.K., Herrmann, H.J.: Evolution of fragment size distributions from the crushing of granular materials. Phys. Rev. E 99, 012904 (2019)

    Article  ADS  Google Scholar 

  18. Cundall, P.: Formulation of a three-dimensional distinct element model - Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock. Mech. Min. Sci. Geomech. 25(3), 107–116 (1988)

    Article  Google Scholar 

  19. Nezami, E.G., Hashash, Y.M., Zhao, D., Ghaboussi, J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31(7), 575–587 (2004)

    Article  Google Scholar 

  20. Nezami, E.G., Hashash, Y.M., Zhao, D., Ghaboussi, J.: Shortest link method for contact detection in discrete element method. Int. J. Numer. Anal. Methods. Geomech. 30(8), 783–801 (2006)

    Article  Google Scholar 

  21. Gallas, J.A.C., Herrmann, H.J., Sokołowski, S.: Convection cells in vibrating granular media. Phys. Rev. Lett. 69, 1371–1374 (1992)

    Article  ADS  Google Scholar 

  22. Lan, Y., Rosato, A.D.: Convection related phenomena in granular dynamics simulations of vibrated beds. Phys. Fluids 9(12), 3615–3624 (1997)

    Article  ADS  Google Scholar 

  23. Zhang, F., Wang, L., Liu, C., Wu, P., Zhan, S.: Patterns of convective flow in a vertically vibrated granular bed. Phys. Lett. A 378(18), 1303–1308 (2014)

    Article  ADS  Google Scholar 

  24. Liffman, K., Metcalfe, G., Cleary, P.: Granular convection and transport due to horizontal shaking. Phys. Rev. Lett. 79, 4574–4576 (1997)

    Article  ADS  Google Scholar 

  25. Hsiau, S.S., Ou, M.Y., Tai, C.H.: The flow behavior of granular material due to horizontal shaking. Adv. Powder Technol. 13(2), 167–180 (2002)

    Article  Google Scholar 

  26. Wassgren, C.R., Hunt, M.L., Freese, P.J., Palamara, J., Brennen, C.E.: Effects of vertical vibration on hopper flows of granular material. Phys. Fluids 14(10), 3439–3448 (2002)

    Article  ADS  Google Scholar 

  27. Rognon, P., Einav, I.: Thermal transients and convective particle motion in dense granular materials. Phys. Rev. Lett. 105, 218301 (2010)

    Article  ADS  Google Scholar 

  28. Thampi, S.P., Ansumali, S., Adhikari, R., Succi, S.: Isotropic discrete laplacian operators from lattice hydrodynamics. J. Comput. Phys. 234, 1–7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the ETH Research Grant ETHIIRA Grant No. ETH-04 14-2 as well as from CAPES and FUNCAP and by the Swiss Commission for Technology and Innovation through the Swiss Competence Center for Energy Research on Heat and Electricity Storage. We also thank D. Rubis and P. Hilger for their help with the preliminary simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel S. Iliev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, P.S., Giacomazzi, E., Wittel, F.K. et al. Behavior of confined granular beds under cyclic thermal loading. Granular Matter 21, 59 (2019). https://doi.org/10.1007/s10035-019-0914-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0914-6

Keywords

Navigation