Skip to main content
Log in

Simulation on propagation characteristics of solitary waves in a one-dimensional charged granular chain

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Solitary waves propagating in a one dimensional charged granular chain has been investigated numerically. Electrically long-range interaction is introduced into such a nonlinear system for the first time. The propagating characteristics of the waves due to physical parameters of materials are studied systematically. It is found that both single solitary wave and multi-solitary wave can be excited in the granular chain. Numerical results show that the amplitude of the solitary wave decays exponentially because of damping as time increases even if the Coulomb’s force is taken into account. Specifically, Young’s modulus and charge quantity have slightly effect on the amplitude attenuation rate. However, the damping coefficient and the density of particles have significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nakagawa, M., Agui, J.H., Wu, D.T., Extramiana, D.V.: Impulse dispersion in a tapered granular chain. Granul. Matter 4, 167–174 (2003)

    Article  Google Scholar 

  2. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006)

    Article  ADS  Google Scholar 

  3. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)

    Article  ADS  Google Scholar 

  4. Hong, J., Xu, A.: Effects of gravity and nonlinearity on the waves in the granular chain. Phys. Rev. E 63, 061310 (2001)

    Article  ADS  Google Scholar 

  5. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94, 108001 (2005)

    Article  ADS  Google Scholar 

  6. Porter, M.A., Daraio, C.E., Herbold, B., Szelengowicz, I., Kevrekidis, P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. D 77, 666–676 (2008)

    MATH  Google Scholar 

  7. Hong, J., Ji, J.Y., Kim, H.: Power Laws in Nonlinear Granular Chain under Gravity. Phys. Rev. Lett. 82, 3058–3061 (1999)

    Article  ADS  Google Scholar 

  8. Hong, J., Xu, A.: Nondestructive identification of impurities in granular medium. Appl. Phys. Lett. 81, 4868–4870 (2002)

    Article  ADS  Google Scholar 

  9. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads[J]. Phys. Rev. E 72(1), 016603 (2005)

    Article  ADS  Google Scholar 

  10. Musson, R.W., Carlson, W.: Finite element study of the effect of material properties on reaction forces produced by solitary wave propagation in granular chains. Granul. Matter 18(2), 22 (2016)

    Article  Google Scholar 

  11. Song, Z.B., Yang, X.Y., Feng, W.X., Xi, Z.H., Li, L.J., Shi, Y.R.: Decaying solitary waves propagating in one-dimensional damped granular chain. Chin. Phys. B 27(7), 074501 (2018)

    Article  ADS  Google Scholar 

  12. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1983)

    Article  ADS  Google Scholar 

  13. Ãvalos, E., Sun, D., Doney, R.L., Sen, S.: Sustained strong fluctuations in a nonlinear chain at acoustic vacuum: beyond equilibrium. Phys. Rev. E 84(2), 046610 (2011)

    Article  ADS  Google Scholar 

  14. Nesterenko, V.F.: Waves in strongly nonlinear discrete systems. Phil. Trans. R. Soc. A 376, 0130 (2017)

    Google Scholar 

  15. Hoogeboom, C., Theocharis, G., Kevrekidis, P.G.: Discrete breathers at the interface between a diatomic and a monoatomic granular chain. Phys. Rev. E 82, 1022–1029 (2010)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Y., Mcfarland, D.M., Vakakis, A.F.: Propagating discrete breathers in forced one-dimensional granular networks: theory and experiment. Granul. Matter 19(3), 59 (2017)

    Article  Google Scholar 

  17. Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005)

    Article  ADS  Google Scholar 

  18. Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011)

    Article  ADS  Google Scholar 

  19. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405–408 (1985)

    Article  ADS  Google Scholar 

  20. Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. J. De Phys. IV 04, 729–734 (1994)

    Google Scholar 

  21. Nesterenko, V.F., Lazaridi, A.N., Sibiryakov, E.B.: The decay of soliton at the contact of two acoustic vacuums. J. Appl. Mech. Tech. Phys. 36, 166–168 (1995)

    Article  ADS  Google Scholar 

  22. Hascoët, E., Herrmann, H.J.: Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B 14, 183–190 (2000)

    Article  ADS  Google Scholar 

  23. Manciu, F.S., Sen, S.: Secondary solitary wave formation in systems with generalized hertz interactions. Phys. Rev. E 66, 016616 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Job, S., Melo, F., Sokolow, A., Sen, S.: How hertzian solitary waves interact with boundaries in a 1d granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  25. Vergara, L.: Scattering of solitary waves from interfaces in granular media. Phys. Rev. Lett. 95, 108002 (2005)

    Article  ADS  Google Scholar 

  26. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  ADS  Google Scholar 

  27. Khatri, D., Daraio, C., Rizzo, P.: Highly nonlinear waves’ sensor technology for highway infrastructures. Proc. Spie 24, 6934 (2008)

    Google Scholar 

  28. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Carretero-González, R., Khatri, D., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102, 024102 (2009)

    Article  ADS  Google Scholar 

  30. Harbola, U., Rosas, A., Esposito, M., Lindenberg, K.: Pulse propagation in tapered granular chains: an analytic study. Phys. Rev. E 80, 031303 (2009)

    Article  ADS  Google Scholar 

  31. Doney, R.L., Sen, S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72, 041304–041304 (2005)

    Article  ADS  Google Scholar 

  32. Sierra-Valdez, F.J., Pacheco-Vázquez, F., Carvente, O., Malloggi, F., Cruz-Damas, J., Rechtman, R.: Acoustic gaps in a chain of magnetic spheres. Phys. Rev. E 81, 011301 (2010)

    Article  ADS  Google Scholar 

  33. Jiang, Y.M., Liu, M.: A thermodynamic model of grain-grain contact force. Acta Phys. Sin. 67, 044502 (2018)

    Google Scholar 

  34. Schäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. de Phys. I(6), 5–20 (1996)

    Google Scholar 

  35. Huang, D.C., Feng, Y.D., Xie, W.M., Lu, M., Wu, H.P., Hu, F.L.: Effect of particle density on the segregation of binary granular systems in a rotating drum. Acta Phys. Sin. 61, 855–865 (2012)

    Google Scholar 

  36. Sun, Q.C., Wang, G.Q.: Force distribution in static granular matter in two dimensions. Acta Phys. Sin. 57, 4667–4674 (2008)

    Google Scholar 

  37. Liu, S.W., Yang, Y.Y., Duan, W.S., Yang, L.: Pulse reflection and transmission due to impurities in a granular chain. Rev. E 92, 013202 (2015)

    Google Scholar 

  38. Hinch, E.J., Saint-Jean, S.: The fragmentation of a line of balls by an impact. Proc. R. Soc. A 455, 3201–3220 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Spence, D.A.: Self similar solutions to adhesive contact problems with incremental loading. Proc. R. Soc. A 305, 55–80 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhang, B.F., Zhang, L.H., Li, S.Y.: Investigation on the measurement of artificial electric charge. J. of Tianjin Univ. 35, 696–698 (2002)

    Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of P. R. China (Grant Nos.11565021, 11047010), the Scientific Research Foundation of Northwest Normal University (Grant No. NWNU-LKQN-16-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-An Sun or Yu-Ren Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LJ., Li, XL., Zhou, ZK. et al. Simulation on propagation characteristics of solitary waves in a one-dimensional charged granular chain. Granular Matter 21, 46 (2019). https://doi.org/10.1007/s10035-019-0894-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0894-6

Keywords

Navigation