Skip to main content

Advertisement

Log in

Impact energy distribution and wavefront shape in granular material assemblies

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this study, we investigated the dynamic response of granular materials subjected to point impact loading based on the discrete element method. The average velocity of the stress pulse was defined. The effect of elastic modulus on wave velocity was analyzed. The energy diffusion process in granular materials is affected by the contact between the particles, which is mainly reflected in two aspects: contact distribution and force transmission ratio. We first compared the wavefront shape in the specimens with different particle arrangements, and then assigned different material properties to the matrix particles. The wavefront shape is consistent with the previous results which proved the influence of the force transmission ratio. Finally, the variations of particle acceleration, kinetic energy and wave velocity at different impact angles are discussed. Our research reveals the energy propagation process through the contact between particles within granular materials. Our research results can be a reference for material design using granular materials for energy collection, energy absorbing etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hinrichsen, H., Wolf, D.E.: The Physics of Granular Media. Wiley, Germany (2004)

    Book  Google Scholar 

  2. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  3. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006)

    Article  ADS  Google Scholar 

  4. Sen, S., Hong, J., Bang, J., et al.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lu, G., Third, J.R., Müller, C.R.: Effect of particle shape on domino wave propagation: a perspective from 3D, anisotropic discrete element simulations. Granul. Matter 16(1), 107–114 (2014)

    Article  Google Scholar 

  6. O’Donovan, J., Ibraim, E., O’Sullivan, C., et al.: Micromechanics of seismic wave propagation in granular materials. Granul. Matter 18(3), 56 (2016)

    Article  Google Scholar 

  7. Abd-Elhady, M., Abd-Elhady, S., Rindt, C., et al.: Force propagation speed in a bed of particles due to an incident particle impact. Adv. Powder Technol. 21(2), 150–164 (2010)

    Article  Google Scholar 

  8. Xu, Y., Shukla, A.: Stress wave velocity in granular medium. Mech. Res. Commun. 17(6), 383–391 (1990)

    Article  Google Scholar 

  9. Nagel, S., Schecter, D., Coppersmith, S., et al.: Force fluctuations in bead packs. Science 269(5223), 513 (1995)

    Article  ADS  Google Scholar 

  10. Clark, A., Kondic, L., Behringer, R.: Particle scale dynamics in granular impact. Phys. Rev. Lett. 109(23), 28302 (2012)

    Article  Google Scholar 

  11. Owens, E., Daniels, K.: Sound propagation and force chains in granular materials. EPL 94(5), 138–161 (2011)

    Article  Google Scholar 

  12. Mueggenburg, N., Jaeger, H., Nagel, S.: Stress transmission through three-dimensional ordered granular arrays. Phys. Rev. E Stat. Nonlinear Soft Mater Phys. 66, 031304 (2002)

    Article  ADS  Google Scholar 

  13. Breton, L., Claudin, P., Clément, E., et al.: Stress response function of a two-dimensional ordered packing of frictional beads. EPL 60(6), 813 (2002)

    Article  ADS  Google Scholar 

  14. Geng, J., Howell, D., Longhi, E., et al.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3), 035506 (2001)

    Article  ADS  Google Scholar 

  15. Geng, J., Reydellet, G., Clément, E., et al.: Green’s function measurements of force transmission in 2D granular materials. Phys. D Nonlinear Phenom 182(3), 274–303 (2003)

    Article  ADS  Google Scholar 

  16. Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Plane wave propagation in 2D and 3D monodisperse periodic granular media. Granul Matter 16(1), 141–150 (2014)

    Article  Google Scholar 

  17. Knuth Matthew, W., Tobin, H.J., et al.: Evolution of ultrasonic velocity and dynamic elastic moduli with shear strain in granular layers. Granul Matter 15(5), 499–515 (2013)

    Article  Google Scholar 

  18. Li, L.L., Yang, X.Q., Zhang, W.: Two interactional solitary waves propagating in two-dimensional hexagonal packing granular system. Granul Matter 20(3), 49 (2018)

    Article  ADS  Google Scholar 

  19. Leonard, A., Fraternali, F., Daraio, C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53(3), 327–337 (2013)

    Article  Google Scholar 

  20. Daraio, C., Ngo, D., Nesterenko, V., et al.: Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 82(2), 036603 (2010)

    Article  Google Scholar 

  21. Leonard, A., Daraio, C.: Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108(21), 214301 (2012)

    Article  ADS  Google Scholar 

  22. Mouraille, O., Mulder, W.A., Luding, S.: Sound wave acceleration in granular materials. J. Stat. Mech. Theory Exp. 47(7), 1192–1197 (2006)

    Google Scholar 

  23. Shrivastava, R.K., Luding, S.: Effect of disorder on bulk sound wave speed: a multiscale spectral analysis. Nonlinear Process. Geophys. 24(3), 435–454 (2017)

    Article  ADS  Google Scholar 

  24. Leonard, A., Daraio, C., Awasthi, A., et al.: Effects of weak disorder on stress-wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E 86(1), 031305 (2012)

    Article  ADS  Google Scholar 

  25. Gendelman, O.V., Zolotarevskiy, V., Savin, A.V., et al.: Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects. Phys. Rev. E 93(3), 032216 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Belheine, N., Plassiard, J.P., Donzé, F.V., et al.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1-2), 320–331 (2009)

    Article  Google Scholar 

  27. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20(3), 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  28. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Funding: this work was supported by the National Natural Science Foundation of China (Nos. 11472196, 11172216 and 11772237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihua Chu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chu, X. Impact energy distribution and wavefront shape in granular material assemblies. Granular Matter 21, 23 (2019). https://doi.org/10.1007/s10035-019-0880-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0880-z

Keywords

Navigation