Skip to main content
Log in

Resolving force indeterminacy in contact dynamics using compatibility conditions

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Contact dynamics (CD) is a powerful method to solve the dynamics of large systems of colliding rigid bodies. CD can be computationally more efficient than classical penalty-based discrete element methods (DEM) for simulating contact between stiff materials such as rock, glass, or engineering metals. However, by idealizing bodies as perfectly rigid, contact forces computed by CD can be non-unique due to indeterminacy in the contact network, which is a common occurence in dense granular flows. We propose a frictionless CD method that is designed to identify only the unique set of contact forces that would be predicted by a soft particle method, such as DEM, in the limit of large stiffness. The method involves applying an elastic compatibility condition to the contact forces, which maintains no-penetration constraints but filters out force distributions that could not have arisen from stiff elastic contacts. The method can be used as a post-processing step that could be integrated into existing CD codes with minimal effort. We demonstrate its efficacy in a variety of indeterminate problems, including some involving multiple materials, non-spherical shapes, and nonlinear contact constitutive laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. An interesting observation, however, is that the impulse delivered by the elastic part of the constitutive law is impacted by changing the damping behavior. The effect of viscous damping appears to be, as expected, dissipating energy during a collision by affecting the path c(t).

References

  1. Anitescu, M.: Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Progr. 105(1), 113–143 (2006)

    Article  MathSciNet  Google Scholar 

  2. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  MathSciNet  Google Scholar 

  3. Barber, J.R.: Elasticity. Springer, Berlin (2002)

    MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Brendel, L., Unger, T., Wolf, D.E.: Contact dynamics for beginners. In: Hinrichsen, H., Wolf, D.E. (eds.) The Physics of Granular Media, pp. 325–343. Wiley-VCH, Weinheim (2004)

    Chapter  Google Scholar 

  6. Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382 (1996)

    Article  ADS  Google Scholar 

  7. Conn, A.R., Gould, G.I.M., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  8. Cottle, R.W.: Linear complementarity problem. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 1873–1878. Springer, Boston, MA (2008)

    Google Scholar 

  9. Peter, A.F., Otto, D.L.S.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  10. Ericson, C.: Real-Time Collision Detection. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  11. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  12. Hertz, H.R.: Uber die beruhrung fester elastischer korper und uber die harte. Verhandlung des Vereins zur Beforderung des GewerbefleiBes, Berlin, p. 449 (1882)

  13. Kanno, Y.: Nonsmooth Mechanics and Convex Optimization. CRC Press, Boca Raton (2011)

  14. Krabbenhoft, K., Huang, J., Vicente Da Silva, M., Lyamin, A.V.: Granular contact dynamics with particle elasticity. Granul. Matter. 14(5), 607–619 (2012)

    Article  Google Scholar 

  15. Kruggel-Emden, H., Sturm, M., Wirtz, S.: Selection of an appropriate time integration scheme for the discrete element method (dem). Comput. Chem. Eng. 32(10), 2263–2279 (2008)

    Article  Google Scholar 

  16. Madsen, J., Pechdimaljian, N., Negrut, D.: Penalty versus complementarity-based frictional contact of rigid bodies: a CPU time comparison. Technical Report TR-2007-05, Simulation-Based Engineering Lab, University of Wisconsin, Madison (2007)

  17. Mazhar, H., Heyn, T., Negrut, D., Tasora, A.: Using nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. (TOG) 34(3), 32 (2015)

    Article  Google Scholar 

  18. McNamara, S., Herrmann, H.: Measurement of indeterminacy in packings of perfectly rigid disks. Phys. Rev. E 70(6), 061303 (2004)

    Article  ADS  Google Scholar 

  19. Morales, J.L., Nocedal, J., Smelyanskiy, M.: An algorithm for the fast solution of symmetric linear complementarity problems. Numerische Mathematik 111(2), 251–266 (2008)

    Article  MathSciNet  Google Scholar 

  20. Moreau, J.-J.: Evolution problem associated with a moving convex set in a hilbert space. J. Differ. Eq. 26(3), 347–374 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  21. Moreau, J.-J.: Bounded variation in time. In: Topics in Nonsmooth Mechanics, pp. 1–74. Birkhäuser, Basel, Boston (1988)

  22. Moreau, J.-J.: New computation methods in granular dynamics. Powders Grains 93, 227–232 (1993)

    Google Scholar 

  23. Negrut, D., Serban, R., Tasora, A.: Posing multibody dynamics with friction and contact as a differential complementarity problem. J. Comput. Nonlinear Dyn. 13(1), 014503 (2018)

    Article  Google Scholar 

  24. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Math. Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  25. Pao, Y.-H.: Extension of the hertz theory of impact to the viscoelastic case. J. Appl. Phys. 26(9), 1083–1088 (1955)

    Article  ADS  Google Scholar 

  26. Radjai, F., Brendel, L., Roux, S.: Nonsmoothness, indeterminacy, and friction in two-dimensional arrays of rigid particles. Phys. Rev. E 54(1), 861 (1996)

    Article  ADS  Google Scholar 

  27. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)

    Article  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  29. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  30. Smith, B., Kaufman, D.M., Vouga, E., Tamstorf, R., Grinspun, E.: Reflections on simultaneous impact. ACM Trans. Graph. (TOG) 31(4), 106 (2012)

    Article  Google Scholar 

  31. Wright, S.J., Nocedal, J.: Numerical Optimization, pp. 67–68. Springer Science, Berlin (1999)

    MATH  Google Scholar 

  32. Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72(1), 011301 (2005)

    Article  ADS  Google Scholar 

  33. Zhang, Q., Kamrin, K.: Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118(5), 058001 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kamrin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, T., Kamrin, K. Resolving force indeterminacy in contact dynamics using compatibility conditions. Granular Matter 20, 69 (2018). https://doi.org/10.1007/s10035-018-0839-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0839-5

Keywords

Navigation