Skip to main content
Log in

Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Understanding the flow and mixing of rod-like particles is fundamental because of the widespread use of rods in the process industry. In this paper, discrete element method is used to investigate the flow and mixing of rod-like particles in a horizontal rotating drum, with rod-like particles being modeled by super-ellipsoids. The influence of the aspect ratio of the rod and the rotation speed of the drum on the flow of rod-like particles is studied. The investigation of spherical particles is also included in this paper to reveal the differences between rod-like and spherical particles. The simulation results show that the flow of rods is more intermittent than that of spheres and that there is more intermittent flow for rod-like particles with larger aspect ratios. Both the aspect ratio of the rod and the rotation speed of the drum considerably influence particle mixing. The mixing rate, as quantified by the slope of the variation in the mixing index with respect to drum revolution, increases as rotation speed and aspect ratio decrease. The study of particle orientation indicates that rod-like particles have a preferred orientation during rotation of the drum: the major axis of the rod inclines to be parallel to the end plate of the drum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  2. Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  3. Yang, R., Zou, R., Yu, A.: Microdynamic analysis of particle flow in a horizontal rotating drum. Powder Technol. 130, 138–146 (2003)

    Article  Google Scholar 

  4. Yamane, K.: Discrete-element method application to mixing and segregation model in industrial blending system. J. Mater. 19, 623–627 (2004)

    ADS  Google Scholar 

  5. Pereira, G., Tran, N., Cleary, P.: Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul. Matter 16, 711–732 (2014)

    Article  Google Scholar 

  6. Komossa, H., Wirtz, S., Scherer, V., Herz, F., Specht, E.: Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations. Powder Technol. 264, 96–104 (2014)

    Article  Google Scholar 

  7. Third, J.R., Scott, D.M., Lu, G., Müller, C.R.: Modelling axial dispersion of granular material in inclined rotating cylinders with bulk flow. Granul. Matter 17, 33–41 (2015)

    Article  Google Scholar 

  8. Wightman, C., Moakher, M., Muzzio, F.J., Walton, O.: Simulation of flow and mixing of particles in a rotating and rocking cylinder. AIChE J. 44, 1266–1276 (1998)

    Article  Google Scholar 

  9. Zhu, H., Yu, A.: Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis. Granul. Matter 7, 97–107 (2005)

    Article  MATH  Google Scholar 

  10. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)

    Article  Google Scholar 

  11. Xu, B., Yu, A.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52, 2785–2809 (1997)

    Article  Google Scholar 

  12. Fan, Y., Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M.: Kinematics of monodisperse and bidisperse granular flows in quasi-two-dimensional bounded heaps. Proc. R. Soc. A 469, 20130235 (2013)

    Article  ADS  Google Scholar 

  13. Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9, 115–127 (1992)

    Article  Google Scholar 

  14. Cleary, P.W.: DEM prediction of industrial and geophysical particle flows. Particuology 8, 106–118 (2010)

    Article  Google Scholar 

  15. Hilton, J., Mason, L., Cleary, P.: Dynamics of gas-solid fluidised beds with non-spherical particle geometry. Chem. Eng. Sci. 65, 1584–1596 (2010)

    Article  Google Scholar 

  16. Hilton, J., Cleary, P.: The influence of particle shape on flow modes in pneumatic conveying. Chem. Eng. Sci. 66, 231–240 (2011)

    Article  Google Scholar 

  17. Cleary, P.W.: Large scale industrial DEM modelling. Eng. Comput. 21, 169–204 (2004)

    Article  MATH  Google Scholar 

  18. Ning, Z., Boerefijn, R., Ghadiri, M., Thornton, C.: Distinct element simulation of impact breakage of lactose agglomerates. Adv. Powder Technol. 8, 15–37 (1997)

    Article  Google Scholar 

  19. Kruggel-Emden, H., Elskamp, F.: Modeling of screening processes with the discrete element method involving non-spherical particles. Chem. Eng. Technol. 37, 847–856 (2014)

    Article  Google Scholar 

  20. Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B., Curtis, J.: A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 1–26 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations. Part I—contact detection algorithms. Chem. Eng. Sci. 65, 5852–5862 (2010)

    Article  Google Scholar 

  22. Hopkins, M.A.: Polyhedra faster than spheres? Eng. Comput. 31, 567–583 (2014)

    Article  Google Scholar 

  23. Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15, 85–93 (2013)

    Article  Google Scholar 

  24. Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol. 278, 286–305 (2015)

    Article  Google Scholar 

  25. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016)

    Article  Google Scholar 

  26. Lu, G., Third, J., Müller, C.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Article  Google Scholar 

  27. Pöschel, T., Buchholtz, V.: Complex flow of granular material in a rotating cylinder. Chaos Solitons Fractals 5, 1901–1912 (1995)

    Article  ADS  Google Scholar 

  28. Yamane, K., Nakagawa, M., Altobelli, S., Tanaka, T., Tsuji, Y.: Steady particulate flows in a horizontal rotating cylinder. Phys. Fluids 10, 1419–1427 (1998)

    Article  ADS  Google Scholar 

  29. Mustoe, G., Miyata, M.: Material flow analyses of noncircular-shaped granular media using discrete element methods. J. Eng. Mech. 127, 1017–1026 (2001)

    Article  Google Scholar 

  30. Third, J., Scott, D., Scott, S., Müller, C.: Tangential velocity profiles of granular material within horizontal rotating cylinders modelled using the DEM. Granul. Matter 12, 587–595 (2010)

    Article  MATH  Google Scholar 

  31. Ma, H., Xu, L., Zhao, Y.: CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed. Powder Technol. 314, 355–366 (2017)

    Article  Google Scholar 

  32. Gan, J., Zhou, Z., Yu, A.: Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles. Chem. Eng. Sci. 144, 201–215 (2016)

    Article  Google Scholar 

  33. Geng, F., Yuan, Z., Yan, Y., Luo, D., Wang, H., Li, B., Xu, D.: Numerical simulation on mixing kinetics of slender particles in a rotary dryer. Powder Technol. 193, 50–58 (2009)

    Article  Google Scholar 

  34. Maione, R., De Richter, S.K., Mauviel, G., Wild, G.: Axial segregation of a binary mixture in a rotating tumbler with non-spherical particles: experiments and DEM model validation. Powder Technol. 306, 120–129 (2017)

    Article  Google Scholar 

  35. Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T., Stannarius, R.: Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E 86, 051304 (2012)

    Article  ADS  Google Scholar 

  36. Wegner, S., Börzsönyi, T., Bien, T., Rose, G., Stannarius, R.: Alignment and dynamics of elongated cylinders under shear. Soft Matter 8, 10950–10958 (2012)

    Article  ADS  Google Scholar 

  37. Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W., Curtis, J.: Granular shear flows of flat disks and elongated rods without and with friction. Phys. Fluids 25, 605–608 (2013)

    Article  Google Scholar 

  38. Guo, Y., Curtis, J.S.: Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47, 21–46 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhong, W.Q., Zhang, Y., Jin, B.S., Zhang, M.Y.: Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed. Chem. Eng. Technol. 32, 386–391 (2009)

    Article  Google Scholar 

  40. Kruggel-Emden, H., Vollmari, K.: Flow-regime transitions in fluidized beds of non-spherical particles. Particuology 29, 1–15 (2016)

    Article  Google Scholar 

  41. Oschmann, T., Hold, J., Kruggel-Emden, H.: Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed. Powder Technol. 258, 304–323 (2014)

    Article  Google Scholar 

  42. Nan, W., Wang, Y., Wang, J.: Numerical analysis on the fluidization dynamics of rodlike particles. Adv. Powder Technol. 27, 2265–2276 (2016)

    Article  Google Scholar 

  43. Chen, X., Zhong, W., Heindel, T.J.: Fluidization of cylinder particles in a fluidized bed. Adv. Powder Technol. 28, 820–835 (2017)

    Article  Google Scholar 

  44. Shao, Y., Ren, B., Jin, B., Zhong, W., Hu, H., Chen, X., Sha, C.: Experimental flow behaviors of irregular particles with silica sand in solid waste fluidized bed. Powder Technol. 234, 67–75 (2013)

    Article  Google Scholar 

  45. Fotovat, F., Chaouki, J., Bergthorson, J.: The effect of biomass particles on the gas distribution and dilute phase characteristics of sand-biomass mixtures fluidized in the bubbling regime. Chem. Eng. Sci. 102, 129–138 (2013)

    Article  Google Scholar 

  46. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1, 11–23 (1981)

    Article  Google Scholar 

  47. Chen, P., Ottino, J.M., Lueptow, R.M.: Subsurface granular flow in rotating tumblers: a detailed computational study. Phys. Rev. E 78, 021303 (2008)

    Article  ADS  Google Scholar 

  48. Zhao, Y., Cheng, Y., Wu, C., Ding, Y., Jin, Y.: Eulerian–Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer. Particuology 8, 44–50 (2010)

    Article  Google Scholar 

  49. Zhao, Y., Jiang, M., Liu, Y., Zheng, J.: Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube. AIChE J. 55, 3109–3124 (2009)

    Article  Google Scholar 

  50. Zhao, Y., Xu, L., Zheng, J.: CFD-DEM simulation of tube erosion in a fluidized bed. AIChE J. 63, 418–437 (2017)

    Article  Google Scholar 

  51. Ting, J.M., Corkum, B.T.: Computational laboratory for discrete element geomechanics. J. Comput. Civ. Eng. 6, 129–146 (1992)

    Article  Google Scholar 

  52. Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001)

    Article  Google Scholar 

  53. Henein, H., Brimacombe, J., Watkinson, A.: Experimental study of transverse bed motion in rotary kilns. Metall. Trans. B 14, 191–205 (1983)

    Article  Google Scholar 

  54. Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part I: numerical model and validations. Powder Technol. 224, 374–389 (2012)

    Article  Google Scholar 

  55. Lacey, P.M.C.: Developments in the theory of particle mixing. J. Appl. Chem. 4, 257–268 (1954)

    Article  Google Scholar 

  56. Third, J., Scott, D., Scott, S.: Axial dispersion of granular material in horizontal rotating cylinders. Powder Technol. 203, 510–517 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 21476193, 51741608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Zhao, Y. Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation. Granular Matter 20, 41 (2018). https://doi.org/10.1007/s10035-018-0823-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0823-0

Keywords

Navigation