Breaking size-segregation waves and mobility feedback in dense granular avalanches

Abstract

Through experiments and discrete particle method (DPM) simulations we present evidence for the existence of a recirculating structure, that exists near the front of dense granular avalanches, and is known as a breaking size-segregation (BSS) wave. This is achieved through the study of three-dimensional bidisperse granular flows in a moving-bed channel. Particle-size segregation gives rise to the formation of a large-particle-rich front and a small-particle-rich tail with a BSS wave positioned between the tail and front. We experimentally resolve the structure of the BSS wave using refractive-index matched scanning and find that it is qualitatively similar to the structure observed in DPM simulations. Our analysis demonstrates a relation between the concentration of small particles in the flow and the amount of basal slip, in which the structure of the BSS wave plays a key role. This leads to a feedback between the mean bulk flow velocity and the process of particle-size segregation. Ultimately, these findings shed new light on the recirculation of large and small grains near avalanche fronts and the effects of this behaviour on the mobility of the bulk flow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Sharp, R.P., Nobles, L.H.: Mudflow of 1941 at wrightwood, Southern california. Geol. Soc. Am. Bull. 64(5), 547–560 (1953)

    ADS  Article  Google Scholar 

  2. 2.

    Bagnold, R.A.: Deposition in the process of hydraulic transport. Sedimentology 10(1), 45–56 (1968)

    ADS  Article  Google Scholar 

  3. 3.

    Takahashi, T.: Debris flow on prismatic open channel. J. Hydraul. Div. ASCE 106(3), 381–396 (1980)

    Google Scholar 

  4. 4.

    Takahashi, T.: Debris flow. Annu. Rev. Fluid Mech. 13, 57–77 (1981)

    ADS  Article  Google Scholar 

  5. 5.

    Johnson, A.M.: Physical Processes in Geology. Freeman, Cooper & Company, San Francisco (1970)

    Google Scholar 

  6. 6.

    Johnson, A.M., Rodine, J.R.: Debris flows. In: Brunsden, D., Prior, D.B. (eds.) Slope Instability. Wiley (1984)

  7. 7.

    Costa, J.E., Williams, G.: Debris flow dynamics. Technical Report 84-606, (videotape) U.S. Geological Survey (1984)

  8. 8.

    Iverson, R.M., Logan, M., LaHusen, R.G., Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Iverson, R.M.: Debris flows: behaviour and hazard assessment. Geol. Today 30(1), 15–20 (2014)

    Article  Google Scholar 

  10. 10.

    Turnbull, B., Bowman, E.T., McElwaine, J.N.: Debris flows: experiments and modelling. C. R. Phys. 16(1), 86–96 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    Pierson, T.C.: Flow Behavior of Channelized Debris Flows, pp. 269–296. Allen & Unwin, Crows Nest (1986)

    Google Scholar 

  12. 12.

    Pouliquen, O., Delour, J., Savage, S.B.: Fingering in granular flows. Nature 386, 816–817 (1997)

    ADS  Article  Google Scholar 

  13. 13.

    Pouliquen, O., Vallance, J.W.: Segregation induced instabilities of granular fronts. Chaos 9(3), 621–630 (1999)

    ADS  Article  MATH  Google Scholar 

  14. 14.

    Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P., Gray, J.M.N.T.: Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543–580 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Baker, J.L., Johnson, C.G., Gray, J.M.N.T.: Segregation-induced finger formation in granular free-surface flows. J. Fluid Mech. 809, 168–212 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Wilson, L., Head, J.W.: Morphology and rheology of pyroclastic flows and their deposits, and guidelines for future observations. US Geol. Surv. Prof. Pap. 1250, 513–524 (1980)

    Google Scholar 

  17. 17.

    Major, J.J., Iverson, R.M.: Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. Geol. Soc. Am. Bull. 111(10), 1424–1434 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    Calder, E.S., Sparks, R.S.J., Gardeweg, M.C.: Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at lascar volcano, chile. J. Volcanol. Geotherm. Res. 104(1), 201–235 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    Félix, G., Thomas, N.: Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221(1), 197–213 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    Bartelt, P., Glover, J., Feistl, T., Bühler, Y., Buser, O.: Formation of levees and en-echelon shear planes during snow avalanche run-out. J. Glaciol. 58(211), 980–992 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G., Gray, J.M.N.T.: Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117(F1), 013301 (2012)

    Article  Google Scholar 

  22. 22.

    Thomas, N.: Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62(1), 961–974 (2000)

    ADS  Article  Google Scholar 

  23. 23.

    Zanuttigh, B., Di Paolo, A.: Experimental analysis of the segregation of dry avalanches and implications for debris flows. J. Hydraul. Res. 44(6), 796–806 (2006)

    Article  Google Scholar 

  24. 24.

    Goujon, C., Dalloz-Dubrujeaud, B., Thomas, N.: Bidisperse granular avalanches on inclined planes: a rich variety of behaviors. Eur. Phys. J. E Soft Matter Biol. Phys. 23, 199–215 (2007)

    Article  Google Scholar 

  25. 25.

    Middleton, G.V.: Experimental studies related to problem of flysch sedimentation. In: Middleton, G.V., Bouma, A.H. (eds.) Flysch Sedimentology in North America (Lajoie, J. ed.). Business and Economics Science Ltd., pp. 253–272 (1970)

  26. 26.

    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32(1), 55–91 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988)

    ADS  Article  Google Scholar 

  28. 28.

    Rognon, P.G., Roux, J.-N., Naaim, M., Chevoir, F.: Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19(5), 058101 (2007)

    ADS  Article  MATH  Google Scholar 

  29. 29.

    May, L.B.H., Golick, L.A., Phillips, K.C., Shearer, M., Daniels, K.E.: Shear-driven size segregation of granular materials: modeling and experiment. Phys. Rev. E 81, 051301 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Moser, G., Monnereau, M., Gray, J.M.N.T., Ancey, C.: Experimental investigation into segregating granular flows down chutes. Phys. Fluids A 23(1), 013301 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    Marks, B., Rognon, P., Einav, I.: Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499–511 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Fan, Y., Boukerkour, Y., Blanc, T., Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M.: Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps. Phys. Rev. E 86(5), 051305 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    Staron, L., Phillips, J.C.: Segregation time-scale in bi-disperse granular flows. Phys. Fluids 26(3), 033302 (2014)

    ADS  Article  Google Scholar 

  34. 34.

    Gray, J.M.N.T., Gajjar, P., Kokelaar, P.: Particle-size segregation in dense granular avalanches. C. R. Phys. 16(1), 73–85 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    Tunuguntla, D.R., Weinhart, T., Thornton, A.R.: Comparing and contrasting size-based particle segregation models. Comput. Part. Mech. 4(4), 387–405 (2017)

    Article  Google Scholar 

  36. 36.

    Edwards, A.N., Vriend, N.M.: Size segregation in a granular bore. Phys. Rev. Fluids 1(6), 064201 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    Thornton, A.R., Gray, J.M.N.T.: Breaking size segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596, 261–284 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Gray, J.M.N.T., Ancey, C.: Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387–423 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Gray, J.M.N.T., Kokelaar, B.P.: Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105–137 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Gray, J.M.N.T., Kokelaar, B.P.: Erratum large particle segregation, transport and accumulation in granular free-surface flows—erratum. J. Fluid Mech. 657, 539 (2010)

    ADS  Article  MATH  Google Scholar 

  41. 41.

    Phillips, J.C., Hogg, A.J., Kerswell, R.R., Thomas, N.H.: Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246(34), 466–480 (2006)

    ADS  Article  Google Scholar 

  42. 42.

    Gray, J.M.N.T., Ancey, C.: Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387–423 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Kokelaar, B.P., Graham, R.L., Gray, J.M.N.T., Vallance, J.W.: Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172–180 (2014)

    ADS  Article  Google Scholar 

  44. 44.

    Gray, J.M.N.T., Thornton, A.R.: A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A Math. Phys. Eng. Sci. 461, 1447–1473 (2005)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Marks, B., Eriksen, J.A., Dumazer, G., Sandnes, B., Måløy, K.J.: Size segregation of intruders in perpetual granular avalanches. J. Fluid Mech. 825, 502–514 (2017)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Gajjar, P., van der Vaart, K., Thornton, A.R., Johnson, C.G., Ancey, C., Gray, J.M.N.T.: Asymmetric breaking size-segregation waves in dense granular free-surface flows. J. Fluid Mech. 794, 460–505 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Gajjar, P., Gray, J.M.N.T.: Asymmetric flux models for particle-size segregation in granular avalanches. J. Fluid Mech. 757, 297–329 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    van der Vaart, K., Gajjar, P., Epely-Chauvin, G., Andreini, N., Gray, J.M.N.T., Ancey, C.: Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114(23), 238001 (2015)

    ADS  Article  Google Scholar 

  49. 49.

    Golick, L.A., Daniels, K.E.: Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80, 042301 (2009)

    ADS  Article  Google Scholar 

  50. 50.

    Davies, T.R.H.: Debris-flow surges—experimental simulation. J. Hydrol. 29(1), 18–46 (1990)

    Google Scholar 

  51. 51.

    Armanini, A., Capart, H., Fraccarollo, L., Larcher, M.: Rheological stratification in experimental free-surface flows of granular–liquid mixtures. J. Fluid Mech. 532, 269–319 (2005)

    ADS  Article  MATH  Google Scholar 

  52. 52.

    Leonardi, A., Cabrera, M., Wittel, F.K., Kaitna, R., Mendoza, M., Wu, W., Herrmann, H.J.: Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92(5), 052204 (2015)

    ADS  Article  Google Scholar 

  53. 53.

    Mahapatra, P.S., Mathew, S., Panchagnula, M.V., Vedantam, S.: Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure. Granul. Matter 18(2), 1–12 (2016)

    Article  Google Scholar 

  54. 54.

    Chambon, G., Ghemmour, A., Laigle, D.: Gravity-driven surges of a viscoplastic fluid: an experimental study. J. Non Newton. Fluid Mech. 158(1), 54–62 (2009)

    Article  Google Scholar 

  55. 55.

    Chambon, G., Ghemmour, A., Naaim, M.: Experimental investigation of viscoplastic free-surface flows in a steady uniform regime. J. Fluid Mech. 754, 332–364 (2014)

    ADS  Article  Google Scholar 

  56. 56.

    Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Ancey, C.: Refractive-index and density matching in concentrated particle suspensions: a review. Exp. Fluids 50, 1183–1206 (2011)

    Article  Google Scholar 

  57. 57.

    Dijksman, J.A., Rietz, F., Lőrincz, K.A., van Hecke, M., Losert, W.: Invited article: refractive index matched scanning of dense granular materials. Rev. Sci. Instrum. 83(1), 011301 (2012)

    ADS  Article  Google Scholar 

  58. 58.

    Hübl, J., Steinwendtner, H.: Estimation of rheological properties of viscous debris flow using a belt conveyor. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 25(9), 751–755 (2000)

    ADS  Article  Google Scholar 

  59. 59.

    Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25(7), 070605 (2013)

    ADS  Article  Google Scholar 

  60. 60.

    Tunuguntla, D.R., Thornton, A.R., Weinhart, T.: From discrete elements to continuum fields: extension to bidisperse systems. Comput. Part. Mech. 3(3), 349–365 (2016)

    Article  Google Scholar 

  61. 61.

    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12(3), 239–252 (2010)

    Article  MATH  Google Scholar 

  62. 62.

    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: Closure relations for shallow granular flows from particle simulations. Granul. Matter 14(4), 531–552 (2012)

    Article  Google Scholar 

  63. 63.

    Batchelor, G.K.: A brief guide to two-phase flow. Theor. Appl. Mech. 1, 27–40 (1989)

    ADS  Article  Google Scholar 

  64. 64.

    du Pont, S.C., Gondret, P., Perrin, B., Rabaud, M.: Granular avalanches in fluids. Phys. Rev. Lett. 90(4), 044301 (2003)

    ADS  Article  Google Scholar 

  65. 65.

    Shattuck, M.D., Ingale, R.A., Reis, P.M.: Granular thermodynamics. AIP Conf. Proc. 1145(1), 43–50 (2009)

    ADS  Article  Google Scholar 

  66. 66.

    Capart, H., Young, D.L., Zech, Y.: Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32(1), 121–135 (2002)

    Article  Google Scholar 

  67. 67.

    Thornton, A.R., Weinhart, T., Ogarko, V., Luding, S.: Multi-scale methods for multi-component granular materials. Comput. Methods Mater. Sci 13(2), 197–212 (2013)

    Google Scholar 

  68. 68.

    Weinhart, T., Tunuguntla, D. R., van Schrojenstein-Lantman, M. P., van der Horn, A. J., Denissen, I. F. C., Windows-Yule, C. R., de Jong, A. C., Thornton, A. R.: Mercurydpm: a fast and flexible particle solver part a: technical advances. In: Proceedings of 7th International Conference on DEM, Springer, pp. 1353–1360 (2017)

  69. 69.

    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  70. 70.

    Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    ADS  Article  Google Scholar 

  71. 71.

    Beare, W.G., Bowden, F.P.: Physical properties of surfaces. I. Kinetic friction. Philos. Trans. R. Soc. A 234(741), 329–354 (1935)

    ADS  Article  Google Scholar 

  72. 72.

    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14(2), 289–294 (2012)

    Article  Google Scholar 

  73. 73.

    Thornton, A.R., Weinhart, T., Luding, S., Bokhove, O.: Frictional dependence of shallow-granular flows from discrete particle simulations. Eur. Phys. J. E 35(12), 127 (2012)

    Article  Google Scholar 

  74. 74.

    Jing, L., Kwok, C.Y., Leung, Y.F.: Micromechanical origin of particle size segregation. Phys. Rev. Lett. 118(11), 118001 (2017)

    ADS  Article  Google Scholar 

  75. 75.

    Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)

    ADS  Article  MATH  Google Scholar 

  76. 76.

    Silbert, L.E., Landry, J.W., Grest, G.S.: Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15(1), 1–10 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. 77.

    Rajchenbach, J.: Dense, rapid flows of inelastic grains under gravity. Phys. Rev. Let. 90(14), 144302 (2003)

    ADS  Article  Google Scholar 

  78. 78.

    Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 225(1160), 49–63 (1954)

    ADS  Article  Google Scholar 

  79. 79.

    Hungr, O., Evans, S.G.: Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol. Soc. Am. Bull. 116(9–10), 1240–1252 (2004)

    ADS  Article  Google Scholar 

  80. 80.

    Kokelaar, B.P., Graham, R.L., Gray, J.M.N.T., Vallance, J.W.: Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172–180 (2014)

    ADS  Article  Google Scholar 

  81. 81.

    Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. 82.

    Saingier, G., Deboeuf, S., Lagrée, P.-Y.: On the front shape of an inertial granular flow down a rough incline. Phys. Fluids 28(5), 053302 (2016)

    ADS  Article  Google Scholar 

  83. 83.

    Jing, L., Kwok, C.Y., Leung, Y.F., Sobral, Y.D.: Effect of geometric base roughness on size segregation. EPJ Web Conf. 140, 03056 (2017)

    Article  Google Scholar 

  84. 84.

    Staron, L., Phillips, J.C.: How large grains increase bulk friction in bi-disperse granular chute flows. Comput. Part. Mech. 3(3), 367–372 (2016)

    Article  Google Scholar 

  85. 85.

    Goujon, C., Thomas, N., Dalloz-Dubrujeaud, B.: Monodisperse dry granular flows on inclined planes: role of roughness. Eur. Phys. J. E 11(2), 147–157 (2003)

    Article  Google Scholar 

  86. 86.

    Jing, L., Kwok, C.Y., Leung, Y.F., Sobral, Y.D.: Characterization of base roughness for granular chute flows. Phys. Rev. E 94(5), 052901 (2016)

    ADS  Article  Google Scholar 

  87. 87.

    Takahashi, T.: Debris flow. Annu. Rev. Fluid Mech. 13(1), 57–77 (1981)

    ADS  Article  Google Scholar 

  88. 88.

    Jessop, D.E., Kelfoun, K., Labazuy, P., Mangeney, A., Roche, O., Tillier, J.-L., Trouillet, M., Thibault, G.: Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology. J. Volcanol. Geotherm. Res. 245(81–97), 2012 (1993)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Dutch STW VIDI project No. 13472, the Swiss SNF Grant No. 200021-149441, and by NERC grants NE/-E003206/1 and NE/K003011/1 as well as EPSRC grants EP/I019189/1, EP/K00428X/1 and EP/M022447/1. J.M.N.T.G. is a Royal Society Wolfson Research Merit Award holder (WM150058) and an EPSRC Established Career Fellow (EP/M022447/1). The authors are grateful to B. de Graffenried for technical assistance, to M. Teuscher for designing and building the experimental setup, and to J.-L. Pfister for assistance with the experiments and analysis. The authors also thank H. Capart for providing the Voronoï tracking code and the referees for helping to improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. van der Vaart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van der Vaart, K., Thornton, A.R., Johnson, C.G. et al. Breaking size-segregation waves and mobility feedback in dense granular avalanches. Granular Matter 20, 46 (2018). https://doi.org/10.1007/s10035-018-0818-x

Download citation

Keywords

  • Avalanches
  • Size-segregation
  • Mobility feedback
  • Basal slip
  • Moving-bed channel