Skip to main content
Log in

Numerical analysis of restitution coefficient, rotational speed and particle size effects on the hydrodynamics of particles in a rotating drum

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Hydrodynamic behavior of two dimensional horizontal rotating drum was studied by using finite volume method and granular kinetic theory. In this work, the effects of the different parameters such as rotation speed, restitution coefficient and particle size on the hydrodynamic and especially on the granular temperature of particles were investigated. At first, the results of present work were verified with previous experimental results. Packing limit of 0.6 and restitution coefficient of 0.95 with Gidaspow inter-phase momentum coefficient showed the good agreement with experimental works. It is found that by increasing the restitution coefficient, the granular temperature at different depth of bed increased and affected the hydrodynamic behavior of the bed. Also, particle size and rotation speed directly changed the granular temperature. Moreover, augmentation of the rotation speed leads to increasing the repose angle which caused better mixing of bed, granular temperature rising and consequently particle velocity alteration in the bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({C}_{D}\) :

Drag coefficient

d :

Diameter (m)

\({e}_{\mathrm{ss}}\) :

Restitution coefficient

g :

Gravity acceleration (\(\mathrm{m/s}^{2}\))

\({g}_{0{\mathrm{ss}}}\) :

Radial distribution function

\({k}_{{\theta s}}\) :

Energy diffusion coefficient

p :

Pressure (Pascal)

\({p}_{s}\) :

Solid pressure (Pascal)

Re :

Reynolds dimensionless number

t :

Time

\({\vec {v}}\) :

Velocity (m/s)

\({\beta }\) :

Drag coefficient between gas and solid phase

\({\gamma }_\mathrm{s}\) :

Dissipation of the turbulent kinetic energy

\({\varepsilon }\) :

Volume fraction

\({\varTheta }\) :

Granular temperature

\({\lambda }\) :

Bulk viscosity

\({\mu }\) :

Dynamic viscosity (kg/m s)

\({\rho }\) :

Density of gas phase (kg/m\(^{3}\))

\(\bar{\bar{\tau }}\) :

Viscous stress tensor (Pascal)

\({\varphi }_{s} \) :

Energy exchange between the gas and the solid phases

\(\omega \) :

Rotation speed (rpm)

\(\hbox {col}\) :

Collisional

\(\hbox {f}\) :

Fluid

\(\hbox {fr}\) :

Friction

\(\hbox {g}\) :

Gas

\(\hbox {kin}\) :

Kinetic

\(\hbox {max}\) :

Maximum

\(\hbox {p}\) :

Particle

\(\hbox {s}\) :

Solid

References

  1. Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001)

    Article  Google Scholar 

  2. Ding, Y.L., Seville, J.P.K., Forster, R., Parker, D.J.: Solids motion in rolling mode rotating drums operated at low to medium rotational speeds. Chem. Eng. Sci. 56, 1769–1780 (2001)

    Article  Google Scholar 

  3. Dubé, O., Alizadeh, E., Chaouki, J., Bertrand, F.: Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci. 101, 486–502 (2013)

    Article  Google Scholar 

  4. Henein, H., Brimacombe, J.K., Watkinson, A.P.: Experimental study of transverse bed motion in rotary kilns. Metall. Trans. B 14, 191–205 (1983)

    Article  Google Scholar 

  5. Jarray, A., Magnanimo, V., Luding, S.: Wet granular flow control through liquid induced cohesion. Powder Technol (2018)

  6. Yang, R.Y., Yu, A.B., McElroy, L., Bao, J.: Numerical simulation of particle dynamics in different flow regimes in a rotating drum. Powder Technol. 188, 170–177 (2008)

    Article  Google Scholar 

  7. Xu, Y., Xu, C., Zhou, Z., Du, J., Hu, D.: 2D DEM simulation of particle mixing in rotating drum: a parametric study. Particuology 82, 141–149 (2010)

    Article  Google Scholar 

  8. Alizadeh, E., Bertrand, F., Chaouki, J.: Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE J. 60, 60–75 (2014)

    Article  Google Scholar 

  9. Kwapinska, M., Saage, G., Tsotsas, E.: Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol. 161, 69–78 (2006)

    Article  Google Scholar 

  10. Yang, S., Cahyadi, A., Wang, J., Chew, J.W.: DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum. AIChE J. 62, 3874–3888 (2016)

    Article  Google Scholar 

  11. He, Y.R., Chen, H.S., Ding, Y.L., Lickiss, B.: Solids motion and segregation of binary mixtures in a rotating drum mixer. Chem. Eng. Res. Des. 85, 963–973 (2007)

    Article  Google Scholar 

  12. Demagh, Y., Ben Moussa, H., Lachi, M., Noui, S., Bordja, L.: Surface particle motions in rotating cylinders: validation and similarity for an industrial scale kiln. Powder Technol. 260, 260–272 (2012)

    Article  Google Scholar 

  13. Santos, D.A., Petri, I.J., Duarte, C.R., Barrozo, M.A.S.: Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technol. 250, 52–62 (2013)

    Article  Google Scholar 

  14. Huang, A.-N., Kao, W.-C., Kuo, H.-P.: Numerical studies of particle segregation in a rotating drum based on Eulerian continuum approach. Adv. Powder Technol. 24, 364–372 (2013)

    Article  Google Scholar 

  15. Yin, H., Zhang, M., Liu, H.: Numerical simulation of three-dimensional unsteady granular flows in rotary kiln. Powder Technol. 253, 138–145 (2014)

    Article  Google Scholar 

  16. Santos, D.A., Dadalto, F.O., Scatena, R., Duarte, C.R., Barrozo, M.A.S.: A hydrodynamic analysis of a rotating drum operating in the rolling regime. Chem. Eng. Res. Des. 94, 204–212 (2015)

    Article  Google Scholar 

  17. Delele, M.A., Weigler, F., Franke, G., Mellmann, J.: Studying the solids and fluid flow behavior in rotary drums based on a multiphase CFD model. Powder Technol. 292, 260–271 (2016)

    Article  Google Scholar 

  18. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, 1st edn. Academic Press, Boston (1994)

    MATH  Google Scholar 

  19. Huilin, L., Gidaspow, D.: Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem. Eng. Sci. 58, 3777–3792 (2003)

    Article  Google Scholar 

  20. Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Minnestota (1980)

    Book  MATH  Google Scholar 

  21. Hussainova, I., Kübarsepp, J., Shcheglov, I.: Investigation of impact of solid particles against hardmetal and cermet targets. Tribol. Int. 32, 337–344 (1999)

    Article  Google Scholar 

  22. Labous, L., Rosato, AD., Dave, RN.: Measurements of collisional properties of spheres using high-speed video analysis. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 5717–5725 (1997)

  23. Ramírez, R., Pöschel, T., Brilliantov, NV., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 4465–4472 (1999)

  24. Gorham, D.A., Kharaz, A.H.: The measurement of particle rebound characteristics. Powder Technol. 112, 193–202 (2000)

    Article  Google Scholar 

  25. Du, W., Bao, X., Xu, J., Wei, W.: Computational fluid dynamics (CFD) modeling of spouted bed: influence of frictional stress, maximum packing limit and coefficient of restitution of particles. Chem. Eng. Sci. 61, 4558–4570 (2006)

    Article  Google Scholar 

  26. Sandadi, S., Pandey, P., Turton, R.: In situ, near real-time acquisition of particle motion in rotating pan coating equipment using imaging techniques. Chem. Eng. Sci. 59, 5807–5817 (2004)

    Article  Google Scholar 

  27. Pandey, P., Turton, R.: Movement of different-shaped particles in a pan-coating device using novel video-imaging techniques. AAPS PharmSciTech 6, E237–E244 (2005)

    Article  Google Scholar 

  28. Kandela, B., Sheorey, U., Banerjee, A., Bellare, J.: Study of tablet-coating parameters for a pan coater through video imaging and Monte Carlo simulation. Powder Technol. 204, 103–112 (2010)

    Article  Google Scholar 

  29. Norouzi, H.R., Zarghami, R., Mostoufi, N.: Insights into the granular flow in rotating drums. Chem. Eng. Res. Des. 102, 12–25 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Hashemabadi.

Ethics declarations

Conflict of interest

The authors immediately certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, A., Hashemabadi, S.H., Yazdani, E. et al. Numerical analysis of restitution coefficient, rotational speed and particle size effects on the hydrodynamics of particles in a rotating drum. Granular Matter 20, 56 (2018). https://doi.org/10.1007/s10035-018-0813-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0813-2

Keywords

Navigation