Skip to main content
Log in

A three-dimensional particle roundness evaluation method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle roundness is one of the major shape parameters influencing the micro-and macroscopic mechanical properties of granular materials. Most of the existing particle roundness methods are based on 2D algorithms utilizing particle projections. However, the morphology of a particle projection will be influenced by the subjectively chosen projection angle. Based on the acknowledged Wadell’s definitions of particle corner and particle roundness, an innovative method is proposed to evaluate the 3D roundness of realistic particles in a quantitative and objective manner. This method first reconstructs the particle with a triangular mesh. Then, corner portions are identified by finding the surface vertexes with both a high local curvature and large relative connected area. After corner identification, a sphere-filling method is employed to fill the corner portions with spheres. Finally, the 3D Wadell roundness is computed by comparing the average radius of the filling spheres with the radius of the maximum inscribed sphere. Validation of the proposed 3D roundness evaluation algorithm is conducted by comparing the results of the proposed method with the results from theoretical and other existing approaches. The comparison indicates that the proposed method can be used to accurately and objectively evaluate the roundness of realistic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Altuhafi, F.N., Coop, M.R., Georgiannou, V.N.: Effect of particle shape on the mechanical behavior of natural sands. J. Geotech. Geoenviron. Eng. 142(12), 15 (2016). https://doi.org/10.1061/(asce)gt.1943-5606.0001569

    Article  Google Scholar 

  2. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006). https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  3. Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effects of grain morphology on critical state: a computational analysis. Acta Geotech. 11, 1–11 (2015)

    Google Scholar 

  4. Bovi, C.R., Boschi, S.R., Carvalho, D.C.C., Cooper, N.: Analysis of the soil sand fraction and recent sediments deposits: an approach based on two-dimensional image analysis. Soil Sci. 181(11/12), 513 (2016)

    Article  Google Scholar 

  5. Rouse, P.C., Fannin, R.J., Shuttle, D.A.: Influence of roundness on the void ratio and strength of uniform sand. Geotechnique 58(3), 227–231 (2008). https://doi.org/10.1680/geot.2008.58.3.227

    Article  Google Scholar 

  6. Kim, D., Ha, S.: Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid. Materials 7(2), 963–979 (2014)

    Article  ADS  Google Scholar 

  7. Zheng, J., Hryciw, R.D.: Roundness and sphericity of soil particles in assemblies by computational geometry. J. Comput. Civ. Eng. 30(6), 04016021 (2016)

    Article  Google Scholar 

  8. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55(1), 31–63 (2008)

    Google Scholar 

  9. Barrett, P.J.: The shape of rock particles, a critical review. Sedimentology 27(3), 291–303 (1980)

    Article  ADS  Google Scholar 

  10. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55(1), 31–63 (2010)

    Google Scholar 

  11. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40(5), 443–451 (1932)

    Article  ADS  Google Scholar 

  12. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment. Res. 23(2), 117–119 (1953)

    Google Scholar 

  13. Vangla, P., Roy, N., Gali, M.L.: Image based shape characterization of granular materials and its effect on kinematics of particle motion. Granul. Matter 20(1), 6 (2018)

    Article  Google Scholar 

  14. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43(3), 250–280 (1935)

    Article  ADS  Google Scholar 

  15. Krumbein, W.C., Sloss, L.L.: Book Reviews: Stratigraphy and Sedimentation, vol. 114, pp. 335–336. Freeman, San Francisco (1951)

    Google Scholar 

  16. Tutumluer, E., Huang, H., Hashash, Y.M.A., Ghaboussi, J.: Imaging based discrete element modeling of granular assemblies. In: Univ Illinois, D.C., Environm Engn, U.I.L.U.S.A. (eds.) 9th International Conference on Multiscale and Functionally Graded Materials, Oahu, HI, Oct 15–18 2006. AIP Conference Proceedings, pp. 544-549. Amer Inst Physics, MELVILLE (2008)

  17. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015)

    Article  Google Scholar 

  18. Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279(279), 46–65 (2014)

    Article  ADS  Google Scholar 

  19. Zhao, B.D., Wang, J.F.: 3D quantitative shape analysis on form, roundness, and compactness with mu CT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  Google Scholar 

  20. Do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall Inc, Englewood Cliffs (1976)

    MATH  Google Scholar 

  21. Dong, C.S., Wang, G.Z.: Curvatures estimation on triangular mesh. J. Zhejiang Uni. Sci. 6(1), 128–136 (2005)

    Article  MATH  Google Scholar 

  22. Martin, R.R.: Estimation of principal curvatures from range data. Int. J. Shape Model. 03n04(03), 99–109 (2011)

    Google Scholar 

  23. Zhao, S.W., Zhou, X.W.: Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies. Granul. Matter 19(2), 18 (2017). https://doi.org/10.1007/s10035-017-0725-6

    Article  Google Scholar 

  24. Ferellec, J.F., Mcdowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010)

    Article  MATH  Google Scholar 

  25. Ferellec, J.-F., McDowell, G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008)

    Article  Google Scholar 

  26. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Visualization ’98. Proceedings, pp. 279–286 (1998)

  27. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15(1), 95–108 (2013)

    Article  Google Scholar 

  28. Zhou, B., Wang, J., Wang, H.: Three-dimensional sphericity, roundness and fractal dimension of sand particles. Géotechnique 68, 1–13 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Liang, Z. & Wang, X. A three-dimensional particle roundness evaluation method. Granular Matter 20, 32 (2018). https://doi.org/10.1007/s10035-018-0802-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0802-5

Keywords

Navigation