Granular Matter

, 20:28 | Cite as

A new contact model for the discrete element method simulation of \(\hbox {TiO}_2\) nanoparticle films under mechanical load

  • Jens Laube
  • Valentin Baric
  • Samir Salameh
  • Lutz Mädler
  • Lucio Colombi Ciacchi
Original Paper

Abstract

We develop a novel coarse-grained contact model for Discrete Element Method simulations of \(\hbox {TiO}_2\) nanoparticle films subjected to mechanical stress. All model elements and parameters are derived in a self-consistent and physically sound way from all-atom Molecular Dynamics simulations of interacting particles and surfaces. In particular, the nature of atomic-scale friction and dissipation effects is taken into account by explicit modelling of the surface features and water adsorbate layers that strongly mediate the particle-particle interactions. The quantitative accuracy of the coarse-grained model is validated against all-atom simulations of \(\hbox {TiO}_2\) nanoparticle agglomerates under tensile stress. Moreover, its predictive power is demonstrated with calculations of force-displacement curves of entire nanoparticle films probed with force spectroscopy. The simulation results are compared with Atomic Force Microscopy and Transmission Electron Microscopy experiments.

Keywords

Flame spray pyrolysis AFM force spectroscopy Multiscale modelling Nanoparticle agglomerates 

Notes

Acknowledgements

We acknowledge fruitful discussion with S. Luding (University of Twente, The Netherlands) and M. Kappl (MPI for Polymer Research Mainz, Germany). The AFM/TEM investigations have been performed by S. Salameh during a research stay in the group of J.W. Seo (KU Leuven, Belgium). This work has been funded by the DFG within the SPP 1486 “Partikel im Kontakt” (Grants CO 1043/3 and MA 3333/3). Computational time has been provided by the HLRN supercomputing centre at Hannover and Berlin, Germany.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10035_2018_799_MOESM1_ESM.pdf (605 kb)
Supplementary material 1 (pdf 605 KB)

Supplementary material 2 (avi 42288 KB)

10035_2018_799_MOESM3_ESM.avi (99.8 mb)
Supplementary material 3 (avi 102149 KB)
10035_2018_799_MOESM4_ESM.avi (5.6 mb)
Supplementary material 4 (avi 5750 KB)
10035_2018_799_MOESM5_ESM.avi (281 mb)
Supplementary material 5 (avi 287780 KB)
10035_2018_799_MOESM6_ESM.avi (28.2 mb)
Supplementary material 6 (avi 28892 KB)
10035_2018_799_MOESM7_ESM.avi (36.2 mb)
Supplementary material 7 (avi 37023 KB)
10035_2018_799_MOESM8_ESM.avi (29.8 mb)
Supplementary material 8 (avi 30504 KB)
10035_2018_799_MOESM9_ESM.avi (17.3 mb)
Supplementary material 9 (avi 17681 KB)
10035_2018_799_MOESM10_ESM.avi (59.2 mb)
Supplementary material 10 (avi 60596 KB)

References

  1. 1.
    Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008)CrossRefGoogle Scholar
  2. 2.
    Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., Israelachvili, J.: The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7(7), 527–538 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  4. 4.
    Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)CrossRefGoogle Scholar
  5. 5.
    Schilde, C., Burmeister, C.-F., Kwade, A.: Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and DEM-simulation. Powder Technol. 259, 1–13 (2014)CrossRefGoogle Scholar
  6. 6.
    Chandler, M.Q., Peters, J.F., Pelessone, D.: Discrete element modeling of calcium-silicate-hydrate. Model. Simul. Mater. Sci. 21(5), 055010 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Boltachev, G.S., Lukyashin, K.E., Shitov, V.A., Volkov, N.B.: Three-dimensional simulations of nanopowder compaction processes by granular dynamics method. Phys. Rev. E 88(1), 012209 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Moreno-Atanasio, R., Antony, S.J., Williams, R.A.: Influence of interparticle interactions on the kinetics of self-assembly and mechanical strength of nanoparticulate aggregates. Particuology 7(2), 106–113 (2009)CrossRefGoogle Scholar
  9. 9.
    Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Laube, J., Salameh, S., Kappl, M., Mädler, L., Colombi Ciacchi, L.: Contact forces between \(\text{ TiO }_2\) nanoparticles governed by an interplay of adsorbed water layers and roughness. Langmuir 31, 11288–11295 (2015)CrossRefGoogle Scholar
  11. 11.
    Laube, J., Dörmann, M., Schmid, H.-J., Mädler, L., Colombi Ciacchi, L.: Dependencies of the adhesion forces between \(\text{ TiO }_2\) nanoparticles on size and ambient humidity. J. Phys. Chem. C 121, 15294–15303 (2017)CrossRefGoogle Scholar
  12. 12.
    Salameh, S., Schneider, J., Laube, J., Alessandrini, A., Facci, P., Seo, J.W., Colombi Ciacchi, L., Mädler, L.: Adhesion mechanisms of the contact interface of \(\text{ TiO }_2\) nanoparticles in films and aggregates. Langmuir 28(31), 11457–11464 (2012)CrossRefGoogle Scholar
  13. 13.
    Mädler, L., Kammler, H.K., Mueller, R., Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369–389 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Salameh, S., Scholz, R., Seo, J.W., Mädler, L.: Contact behavior of size fractionated \(\text{ TiO }_2\) nanoparticle agglomerates and aggregates. Powder Technol. 256, 345–351 (2014)CrossRefGoogle Scholar
  15. 15.
    Fabre, A., Salameh, S., Colombi Ciacchi, L., Kreutzier, M., Ommen, J.R.: Contact mechanics of highly porous oxide nanoparticle agglomerates. J. Nanopart. Res. 18, 200 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Salameh, S., Veen, M.A., Kappl, M., Ommen, J.R.: Contact forces between single metal oxide nanoparticles in gas-phase applications and processes. Langmuir 33, 2477–2484 (2017)CrossRefGoogle Scholar
  17. 17.
    Krylov, S.Y., Frenken, J.W.M.: The physics of atomic-scale friction: basic considerations and open questions. Phys. Status Solidi B 251(4), 711–736 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Dong, Y., Perez, D., Voter, A.F., Martini, A.: The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett. 42(1), 99–107 (2011)CrossRefGoogle Scholar
  19. 19.
    Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004)CrossRefGoogle Scholar
  20. 20.
    Park, J.Y., Salmeron, M.: Fundamental aspects of energy dissipation in friction. Chem. Rev. 114(1), 677–711 (2014)CrossRefGoogle Scholar
  21. 21.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41(12), 123001 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Jinesh, K., Frenken, J.: Experimental evidence for ice formation at room temperature. Phys. Rev. Lett. 101(3), 036101 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Elsevier, Oxford (2011)Google Scholar
  26. 26.
    Hertz, H.: Über die Berührung fester elastischer Körper. J. für die reine und Angew. Math. 92, 156–171 (1882)MATHGoogle Scholar
  27. 27.
    Isaak, D.G., Carnes, J.D., Anderson, O.L., Cynn, H., Hake, E.: Elasticity of \(\text{ TiO }_2\) rutile to 1800 k. Phys. Chem. Miner. 26(1), 31–43 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Feistel, R.: A new equation of state for \(\text{ H }_2\text{ O }\) ice \(\text{ I }_{\rm h}\). J. Phys. Chem. Ref. Data 35(2), 1021 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8(2), 85–106 (1928)CrossRefMATHGoogle Scholar
  30. 30.
    Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 126101 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Sang, Y., Dubé, M., Grant, M.: Dependence of friction on roughness, velocity, and temperature. Phys. Rev. E 77(3), 036123 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Chandross, M., Webb, E., Stevens, M., Grest, G., Garofalini, S.: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. 93(16), 166103 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Carpick, R.W., Agraït, N., Ogletree, D.F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12(13), 3334–3340 (1996)CrossRefGoogle Scholar
  34. 34.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Glosli, J., McClelland, G.: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70(13), 1960–1963 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Friddle, R.W., Noy, A., De Yoreo, J.J.: Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. 109(34), 13573–13578 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Wenning, L., Müser, M.H.: Friction laws for elastic nanoscale contacts. Europhys. Lett. 54(5), 693–699 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70(12), 1548 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Enachescu, M., Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., Salmeron, M.: Atomic force microscopy study of an ideally hard contact: the diamond(111)/tungsten carbide interface. Phys. Rev. Lett. 81(9), 1877–1880 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Ecke, S., Butt, H.-J.: Friction between individual microcontacts. J. Colloid Interf. Sci. 244(2), 432–435 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans. ASME 20(3), 327–344 (1953)MathSciNetMATHGoogle Scholar
  42. 42.
    Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Physica A 269(2–4), 536–553 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Ai, J., Chen, J.-F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)CrossRefGoogle Scholar
  44. 44.
    O’ Sullivan, C., Bray, J.D.: Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng. Comput. 21(2/3/4), 278–303 (2004)CrossRefMATHGoogle Scholar
  45. 45.
    Meißner, R.H., Wei, G., Colombi Ciacchi, L.: Estimation of the free energy of adsorption of a polypeptide on amorphous \(\text{ SiO }_2\) from molecular dynamics simulations and force spectroscopy experiments. Soft Matter 11, 6254–6265 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Melnikov, K., Mani, R., Wittel, F.K., Thielmann, M., Herrmann, H.J.: Models, algorithms and validation for opensource DEM and CFD–DEM. Phys. Rev. E 92, 022206 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Mädler, L., Lall, A.A., Friedlander, S.K.: One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness. Nanotechnology 17(19), 4783–4795 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Mädler, L., Roessler, A., Pratsinis, S.E., Sahm, T., Gurlo, A., Barsan, N., Weimar, U.: Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO\(_2\) nanoparticles. Sensors Actuators B Chem. 114(1), 283–295 (2006)CrossRefGoogle Scholar
  49. 49.
    Eggersdorfer, M.L., Gröhn, A.J., Sorensen, C.M., McMurry, P.H., Pratsinis, S.E.: Mass-mobility characterization of flame-made \(\text{ ZrO }_2\) aerosols: primary particle diameter and extent of aggregation. J. Colloid Interface Sci. 387(1), 12–23 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Weber, A.P., Friedlander, S.K.: In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J. Aerosol Sci. 28(2), 179–192 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    Mandzy, N., Grulke, E., Druffel, T.: Breakage of \(\text{ TiO }_2\) agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol. 160(2), 121–126 (2005)CrossRefGoogle Scholar
  52. 52.
    Buesser, B., Gröhn, A.J., Pratsinis, S.E.: Sintering rate and mechanism of \(\text{ TiO }_2\) nanoparticles by molecular dynamics. J. Phys. Chem. C 115(22), 11030–11035 (2011)CrossRefGoogle Scholar
  53. 53.
    Schneider, J., Colombi Ciacchi, L.: First principles and classical modeling of the oxidized titanium (0001) surface. Surf. Sci. 604(13–14), 1105–1115 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    Schneider, J., Colombi Ciacchi, L.: A classical potential to model the adsorption of biological molecules on oxidized titanium surfaces. J. Chem. Theory Comput. 7(2), 473–484 (2011)CrossRefGoogle Scholar
  55. 55.
    Schopf, S.O., Salameh, S., Mädler, L.: Transfer of highly porous nanoparticle layers to various substrates through mechanical compression. Nanoscale 5, 3764–3772 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Thakur, S.C., Morrissey, J.P., Sun, J., Chen, J.F., Ooi, J.Y.: Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter 16, 383–400 (2014)CrossRefGoogle Scholar
  57. 57.
    Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(11), 1868–1873 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926 (1983)ADSCrossRefGoogle Scholar
  59. 59.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)ADSCrossRefMATHGoogle Scholar
  60. 60.
    Filippov, A.V., Zurita, M., Rosner, D.E.: Fractal-like aggregates: relation between morphology and physical properties. J. Colloid Interface Sci. 229(1), 261–273 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (1977)Google Scholar
  62. 62.
    Ommen, J.R., Valverde, J.M., Pfeffer, R.: Fluidization of nanopowders: a review. J. Nanopart. Res. 3, 1–29 (2012)Google Scholar
  63. 63.
    Eggersdorfer, M.L., Pratsinis, S.E.: The structure of agglomerates consisting of polydisperse particles. Aerosol Sci. Technol. 3, 347–353 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T.E., Hogan, C.J.: Determination of the scalar friction factor for nonspherical particles and aggregates across the entire knudsen number range by direct simulation Monte Carlo (DSMC). Aerosol Sci. Technol. 46(10), 1065–1078 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Mansfield, M.L., Douglas, J.F., Garboczi, E.J.: Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. Phys. Rev. E 64(6), 061401 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. 12(2/3), 140 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany
  2. 2.Leibniz-Institut für Werkstofforientierte Technologien - IWT, Faculty of Production Engineering, MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany
  3. 3.Product and Process Engineering Group, Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations