Granular Matter

, 20:16 | Cite as

A medial axis based method for irregular grain shape representation in DEM simulations

  • Tijan Mede
  • Guillaume Chambon
  • Pascal Hagenmuller
  • François Nicot
Original Paper
  • 84 Downloads

Abstract

This paper describes a novel method for representing arbitrary grain shapes in discrete element method (DEM) simulations. The method takes advantage of the efficient sphere contact treatment in DEM and approximates the overall grain shape by combining a number of overlapping spheres. The method is based on the medial axis transformation, which defines the set of spheres needed for total grain reconstruction. This number of spheres is then further diminished by selecting only a subset of reconstructing spheres and opting for a grain approximation rather than a full grain reconstruction. The effects of the grain approximating parameters on the key geometrical features of the grains and the overall mechanical response of the granular medium are monitored by an extensive sensitivity analysis. The results of DEM quasi-static oedometric compression on a granular sample of approximated grains exhibit a high level of accuracy even for a small number of spheres.

Keywords

Irregular grain Overlapping spheres DEM Medial axis Snow 

Notes

Acknowledgements

We would like to thank Mohamed Naaim for fruitful discussions and support. This project is Funded by Labex TEC21 (Investissements d’Avenir, Grant agreement ANR-11-LABX-0030). We thank Henning Lö we and an anonymous reviewer for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors, T. Mede, G. Chambon, P. Hagenmuller, F. Nicot have no conflict of interest or financial tie to disclose. They agree to allow the corresponding author to serve as the primary correspondent with the editorial office and to review and sign off on the final proofs prior to publication.

References

  1. 1.
    Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)CrossRefGoogle Scholar
  2. 2.
    Albaba, A., Lambert, S., Nicot, F., Chareyre, B.: Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling. Granul. Matter 17(5), 603–616 (2015).  https://doi.org/10.1007/s10035-015-0579-8 CrossRefGoogle Scholar
  3. 3.
    Amberger, S., Friedl, M., Goniva, C., Pirker, S., Kloss, C.: Approximation of objects by spheres for multisphere simulations in DEM. In: ECCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering (2012)Google Scholar
  4. 4.
    Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Geotech. Lett. 2(3), 107–112 (2012). https://hal.archives-ouvertes.fr/hal-01571135
  5. 5.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form. MIT Press, Cambridge (1976)Google Scholar
  6. 6.
    Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Trans. Graph. 23(1), 1–26 (2004)CrossRefGoogle Scholar
  7. 7.
    Coeurjolly, D., Hulin, J., Sivignon, I.: Finding a minimum medial axis of a discrete shape is NP-hard. Theor. Comput. Sci. 406(1–2), 72–79 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cundall, P., Strack, O.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  9. 9.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, Fmc: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021,309 (2005).  https://doi.org/10.1103/PhysRevE.72.021309 CrossRefGoogle Scholar
  10. 10.
    Fardin, N., Stephansson, O., Jing, L.: The scale dependence of rock joint surface roughness. Int. J. Rock Mech. Min. Sci. 38(5), 659–669 (2001)CrossRefGoogle Scholar
  11. 11.
    Ferellec, J.F., McDowell, G.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Fierz, C.: The international classification for seasonal snow on the ground. IHP-VI Technical Documents in hydrology. UNESCO/IHP (2009). https://books.google.fr/books?id=1Su5ZwEACAAJ
  13. 13.
    Flin, F., Brzoska, J.B., Lesaffre, B., Colou, C., Pieritz, R.: Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol. 38, 39–44 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Gao, R., Du, X., Zeng, Y., Li, Y., Yan, J.: A new method to simulate irregular particles by discrete element method. J. Rock Mech. Geotech. Eng. 4(3), 276–281 (2012).  https://doi.org/10.3724/SP.J.1235.2012.00276 CrossRefGoogle Scholar
  15. 15.
    Gaume, J., van Herwijnen, A., Chambon, G., Birkeland, K.W., Schweizer, J.: Modeling of crack propagation in weak snowpack layers using the discrete element method. Cryosphere 9(5), 1915–1932 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J.: Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation. The Cryosphere 11(1), 217–228 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Hagenmuller, P., Calonne, N., Chambon, G., Flin, F., Geindreau, C., Naaim, M.: Characterization of the snow microstructural bonding system through the minimum cut density. Cold Reg. Sci. Technol. 108, 72–79 (2014)CrossRefGoogle Scholar
  18. 18.
    Hagenmuller, P., Chambon, G., Flin, F., Morin, S., Naaim, M.: Snow as a granular material: assessment of a new grain segmentation algorithm. Granul. Matter 16(4), 421–432 (2014)CrossRefGoogle Scholar
  19. 19.
    Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., Naaim, M.: Energy-based binary segmentation of snow microtomographic images. J. Glaciol. 59(217), 859–873 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Hagenmuller, P., Chambon, G., Naaim, M.: Microstructure-based modeling of snow mechanics: a discrete element approach. Cryosphere 9(5), 1969–1982 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Hagenmuller, P., Matzl, M., Chambon, G., Schneebeli, M.: Sensitivity of snow density and specific surface area measured by microtomography to different image processing algorithms. Cryosphere 10(3), 1039–1054 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Hart, R., Cundall, P., Lemos, J.: Formulation of a three-dimensional distinct element model—part ii. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock. Mech. Min. 25(3), 117–125 (1988)CrossRefGoogle Scholar
  23. 23.
    Hogue, C.: Shape representation and contact detection for discrete element simulations of arbitrary eometries. Eng. Comput. 15(2–3), 374–390 (1998)CrossRefMATHGoogle Scholar
  24. 24.
    Kochmanov, N., Tanaka, H.: Role of microstructure in the mechanical behaviour of clayGoogle Scholar
  25. 25.
    Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188(2), 153–165 (2008).  https://doi.org/10.1016/j.powtec.2008.04.037 CrossRefGoogle Scholar
  26. 26.
    Lee, Y., Fang, C., Tsou, Y.R., Lu, L.S., Yang, C.T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11(5), 307–315 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Markou, I.: Effect of grain shape and size on the mechanical behavior of reinforced sand. Procedia Eng. 143(Supplement C), 146–152 (2016).  https://doi.org/10.1016/j.proeng.2016.06.019. Advances in Transportation Geotechnics IIICrossRefGoogle Scholar
  28. 28.
    Price, M., Murariu, V., Morrison, G.: Sphere clump generation and trajectory comparison for real particles. In: Discrete Elements Methods 2007 ConferenceGoogle Scholar
  29. 29.
    Radjai, F., Dubois, F.: Discrete-element modeling of granular materials. Wiley-Iste (2011). https://hal.archives-ouvertes.fr/hal-00691805
  30. 30.
    Schleef, S., Löwe, H., Schneebeli, M.: Hot-pressure sintering of low-density snow analyzed by X-ray microtomography and in situ microcompression. Acta Mater. 71, 185–194 (2014)CrossRefGoogle Scholar
  31. 31.
    Schweizer, J., Jamieson, J.: Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol. 33(2–3), 207–221 (2001).  https://doi.org/10.1016/S0165-232X(01)00039-8 CrossRefGoogle Scholar
  32. 32.
    Schweizer, J., Jamieson, J., Schneebeli, M.: Snow avalanche formation. Rev. Geophys. 41(4), 2-1–2-25 (2003)CrossRefGoogle Scholar
  33. 33.
    Smilauer, V., Catalano, E., Chareyre, B., Dorofenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholt‘es, L., Sibille, L., Stransky, J., Thoeni, K.: Yade reference documentation. In: Smilauer, V. (ed.) Yade Documentation, 1st edn. The Yade Project, (2010). http://yade-dem.org/doc/
  34. 34.
    Stolpner, S., Kry, P., Siddiqi, K.: Medial spheres for shape approximation. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1234–1240 (2012)CrossRefGoogle Scholar
  35. 35.
    Szarf, K., Combe, G., Villard, P.: Influence of the grains shape on the mechanical behavior of granular materials. AIP Conf. Proc. 1145(1), 357–360 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Wensrich, C., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhao, Y., Xue, Q., Huang, Fx, Hu, Xt, Li, Js: Experimental study on the microstructure and mechanical behaviors of leachate-polluted compacted clay. Environ. Earth Sci. 75(12), 1006 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Grenoble Alpes, Irstea, UR ETGRSaint-Martin-d’HèresFrance
  2. 2.Météo France – CNRS, CNRMSaint-Martin-d’HèresFrance

Personalised recommendations