Advertisement

Granular Matter

, 20:2 | Cite as

Experimental measurement of the angle of repose of a pile of soft frictionless grains

Original Paper

Abstract

Piles of perfectly smooth spherical particles are able to sustain a non-zero angle of repose as a result of geometrical constraints. Here we report on a study of piles made of soft frictionless grains and their angle of repose. The piles are formed by a continuous bubbling of air into a soapy solution in a narrow container of rectangular cross section. For wide containers, the angle of repose of the pile is \(3.75\pm 0.11\) degrees, independent of bubble flow rate. However, we find that the angle of repose is sensitive to confinement effects. In contrast with sand piles, surface avalanches are nearly absent and the fluidized region along the interface is several layers deep. In addition, the bubble pile is metastable, i.e. upon interruption of the gas flux the slope relaxes back to zero as a result of liquid drainage.

Keywords

Angle of repose Sand piles Bubbles Foams 

Notes

Acknowledgements

We gratefully acknowledge financial support provided by James Madison University Program of Grants for Faculty Assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Amon, D.L., Niculescu, T., Utter, B.C.: Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration. Phys. Rev. E 88, 012203+ (2013).  https://doi.org/10.1103/physreve.88.012203 ADSCrossRefGoogle Scholar
  2. 2.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media. Cambridge University Press, Cambridge (2013).  https://doi.org/10.1017/cbo9781139541008 CrossRefMATHGoogle Scholar
  3. 3.
    Azéma, E., Radjaï, F., Roux, J.N.: Internal friction and absence of dilatancy of packings of frictionless polygons. Phys. Rev. E 91, 010202+ (2015).  https://doi.org/10.1103/physreve.91.010202 ADSCrossRefGoogle Scholar
  4. 4.
    Coulomb, C.: Sur une application des règles de maximis et minimis à quelques problèmes de Statique, relatifs à lÁrchitecture. L’Imprimerie Royale (1776)Google Scholar
  5. 5.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309+ (2005).  https://doi.org/10.1103/physreve.72.021309 ADSCrossRefGoogle Scholar
  6. 6.
    Daerr, A., Douady, S.: Sensitivity of granular surface flows to preparation. Europhys. Lett. 47(3), 324–330 (1999).  https://doi.org/10.1209/epl/i1999-00392-7 ADSCrossRefGoogle Scholar
  7. 7.
    Daerr, A., Douady, S.: Two types of avalanche behaviour in granular media. Nature 399(6733), 241–243 (1999).  https://doi.org/10.1038/20392 ADSCrossRefGoogle Scholar
  8. 8.
    Dai, B.B., Yang, J., Zhou, C.V.: Micromechanical origin of angle of repose in granular materials. Granul. Matter 19(2), 1–10 (2017).  https://doi.org/10.1007/s10035-017-0709-6 CrossRefGoogle Scholar
  9. 9.
    Feitosa, K., Durian, D.: Gas and liquid transport in steady-state aqueous foam. Eur. Phys. J. E: Soft Matter Biol. Phys. 26(3), 309–316 (2008).  https://doi.org/10.1140/epje/i2007-10329-6 CrossRefGoogle Scholar
  10. 10.
    Feitosa, K., Halt, O.L., Kamien, R.D., Durian, D.J.: Bubble kinetics in a steady-state column of aqueous foam. Europhys. Lett. 76(4), 683–689 (2006).  https://doi.org/10.1209/epl/i2006-10304-5 ADSCrossRefGoogle Scholar
  11. 11.
    Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40(1), 1–24 (2008).  https://doi.org/10.1146/annurev.fluid.40.111406.102142 ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hanes, D.M., Walton, O.R.: Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109(1–3), 133–144 (2000).  https://doi.org/10.1016/s0032-5910(99)00232-6 CrossRefGoogle Scholar
  13. 13.
    Hatano, T.: Power-law friction in closely packed granular materials. Phys. Rev. E 75(6), 060301(R)+ (2007).  https://doi.org/10.1103/physreve.75.060301 ADSCrossRefGoogle Scholar
  14. 14.
    Jaeger, H.M., Liu, C.H., Nagel, S.R.: Relaxation at the angle of repose. Phys. Rev. Lett. 62(1), 40–43 (1989).  https://doi.org/10.1103/physrevlett.62.40 ADSCrossRefGoogle Scholar
  15. 15.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996).  https://doi.org/10.1103/revmodphys.68.1259 ADSCrossRefGoogle Scholar
  16. 16.
    Jop, P., Yoël, F., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541(–1), 167–192 (2005).  https://doi.org/10.1017/s0022112005005987 ADSCrossRefMATHGoogle Scholar
  17. 17.
    Koehler, S.A., Stone, H.A., Brenner, M.P., Eggers, J.: Dynamics of foam drainage. Phys. Rev. E 58(2), 2097–2106 (1998).  https://doi.org/10.1103/physreve.58.2097 ADSCrossRefGoogle Scholar
  18. 18.
    Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16(7), 2371–2381 (2004).  https://doi.org/10.1063/1.1736611 ADSCrossRefMATHGoogle Scholar
  19. 19.
    Lemieux, P.A., Durian, D.J.: From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys. Rev. Lett. 85(20), 4273–4276 (2000).  https://doi.org/10.1103/physrevlett.85.4273 ADSCrossRefGoogle Scholar
  20. 20.
    Lespiat, R., Addad, S.C., Höhler, R.: Jamming and flow of random-close-packed spherical bubbles: an analogy with granular materials. Phys. Rev. Lett. 106(14), 148302+ (2011).  https://doi.org/10.1103/physrevlett.106.148302 ADSCrossRefGoogle Scholar
  21. 21.
    Louge, M.Y., Keast, S.C.: On dense granular flows down flat frictional inclines. Phys. Fluids 13(5), 1213–1233 (2001).  https://doi.org/10.1063/1.1358870 ADSCrossRefMATHGoogle Scholar
  22. 22.
    Louge, M.Y., Valance, A., Lancelot, P., Delannay, R., Artières, O.: Granular flows on a dissipative base. Phys. Rev. E 92, 022204+ (2015).  https://doi.org/10.1103/physreve.92.022204 ADSCrossRefGoogle Scholar
  23. 23.
    Ortiz, C.P., Riehn, R., Daniels, K.E.: Flow-driven formation of solid-like microsphere heaps. Soft Matter 9(2), 543–549 (2013).  https://doi.org/10.1039/c2sm26762d ADSCrossRefGoogle Scholar
  24. 24.
    Peyneau, P.E., Roux, J.N.: Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78(1), 011307+ (2008).  https://doi.org/10.1103/physreve.78.011307 ADSCrossRefGoogle Scholar
  25. 25.
    Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002).  https://doi.org/10.1017/s0022112001006796 ADSCrossRefMATHGoogle Scholar
  26. 26.
    Saint-Jalmes, A., Vera, M.U., Durian, D.J.: Uniform foam production by turbulent mixing: new results on free drainage vs. liquid content. Eur. Phys. J. B Condens. Matter Complex Syst. 12(1), 67–73 (1999).  https://doi.org/10.1007/s100510050978 CrossRefGoogle Scholar
  27. 27.
    Saint-Jalmes, A., Vera, M.U., Durian, D.J.: Free drainage of aqueous foams: container shape effects on capillarity and vertical gradients. Europhys. Lett. (2000).  https://doi.org/10.1209/epl/i2000-00326-y
  28. 28.
    Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J.M., Jenkins, J.T., Delannay, R.: Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301+ (2003).  https://doi.org/10.1103/physrevlett.91.264301 ADSCrossRefGoogle Scholar
  29. 29.
    Taboada, A., Estrada, N., Radjaï, F.: Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett. 97, 098302+ (2006).  https://doi.org/10.1103/physrevlett.97.098302 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJames Madison UniversityHarrisonburgUSA

Personalised recommendations