Granular Matter

, 20:1 | Cite as

Contact forces distribution for a granular material from a Monte Carlo study on a single grain

  • Manuel A. Cárdenas-Barrantes
  • Jose Daniel Muñoz
  • William F. Oquendo
Original Paper


The force network ensemble is one of the most promising statistical descriptions of granular media, with an entropy accounting for all force configurations at mechanical equilibrium consistent with some external stress. It is possible to define a temperature-like parameter, the angoricity \(\alpha ^{-1}\), which under isotropic compression is a scalar variable. This ensemble is frequently studied on whole packings of grains; ho wever, previous works have shown that spatial correlations can be neglected in many cases, opening the door to studies on a single grain. Our work develops a Monte Carlo method to sample the force ensemble on a single grain at constant angoricity on two and three-dimensional mono-disperse granular systems, both with or without static friction. The results show that, despite the steric exclusions and the constrictions of Coulomb’s limit and repulsive normal forces, the pressure per grain always show a k-gamma distribution with scale parameter \(\nu =\alpha ^{-1}\) and shape parameter k close to \(k'\), the number of degrees of freedom in the system. Moreover, the average pressure per grain fulfills an equipartition theorem \(\langle p \rangle = k' {\alpha }^{-1} \) in all cases (in close parallelism with the one for an ideal gas). Those results are in good agreement with the analysis of previous experimental and numerical results on many-grain systems, and with our own molecular dynamics simulations. These results suggest the existence of \(k'\) independent random variables (i.e. elementary forces) with identical exponential distributions as the basic elements for describing the force network ensemble at low angoricities under isotropic compression, in analogy with the volume ensemble of granular materials.


Force network ensemble Contact force distribution Single grain Monte Carlo method Pressure Angoricity 


Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest with the work submitted.


  1. 1.
    Agnolin, I., Roux, J.: Internal states of model isotropic granular packings. I. assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007). ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Anikeenko, A., Medvedev, N., Aste, T.: Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 77, 031101 (2008). ADSCrossRefGoogle Scholar
  3. 3.
    Aste, T., Di Matteo, T.: Emergence of gamma distributions in granular materials and packing models. Phys. Rev. E (2008). Google Scholar
  4. 4.
    Aste, T., Di Matteo, T., Saadalfar, M., Senden, T., Swinney, H.: An invariant distribution in static granular media. Euro. Phys. Lett. 79(2), 24003 (2007). ADSCrossRefGoogle Scholar
  5. 5.
    Blumenfeld, R., Jordan, J., Edwards, S.: Interdependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems. Phys. Rev. Lett. 109(23), 238001 (2012). ADSCrossRefGoogle Scholar
  6. 6.
    Clusel, M., Corwin, E., Siemens, A., Brujić, J.: A granocentric model for random packing of jammed emulsions. Nature 460(7255), 611 (2009). ADSCrossRefGoogle Scholar
  7. 7.
    Corwin, E., Clusel, M., Siemens, A., Brujić, J.: Model for random packing of polydisperse frictionless spheres. Soft Matter 6(13), 2949 (2010). ADSCrossRefGoogle Scholar
  8. 8.
    Cowin, S., Satake, M.: Continuum mechanical and statistical approaches in the mechanics of granular materials. J. Rheol. 23(23), 243 (1979). ADSCrossRefGoogle Scholar
  9. 9.
    Delaney, G., Di Matteo, T., Aste, T.: Combining tomographic imaging and dem simulations to investigate the structure of experimental sphere packings. Soft Matter 6(1), 2992 (2010). ADSCrossRefGoogle Scholar
  10. 10.
    Devroye, L.: Non-Uniform Random Variable Generation, 1st edn. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  11. 11.
    Duran, J.: An Introduction to the Physics of Granular Materials, 2nd edn. Springer, Berlin (2000)MATHGoogle Scholar
  12. 12.
    Edwards, S., Grinev, D.: Statistical mechanics of vibration-induced compaction of powders. Phys. Rev. E 58(4), 4758 (1998). ADSCrossRefGoogle Scholar
  13. 13.
    Edwards, S., Oakeshott, R.: Theory of powders. Phys. A Stat. Mech. Appl. 157(3), 1080 (1989). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Henkes, S., Chakraborty, B.: Statistical mechanics framework for static granular matter. Phys. Rev. E 79(6), 061301 (2009). ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Makse, H., Kurchan, J.: Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415(1), 614 (2002). ADSCrossRefGoogle Scholar
  16. 16.
    Matsushima, T., Blumenfeld, R.: Universal structural characteristics of planar granular packs. Phys. Rev. Lett. 112(9), 098003 (2014). ADSCrossRefGoogle Scholar
  17. 17.
    Maxwell, J.: L. on the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27(182), 294 (1864)CrossRefGoogle Scholar
  18. 18.
    Metzger, P., Donahue, C.: Elegance of disordered granular packings: a validation of edwards hypothesis. Phys. Rev. Lett. 94(1), 148001 (2005). ADSCrossRefGoogle Scholar
  19. 19.
    Oquendo, W., Muñoz, J., Radjai, F.: An equation of state for granular media at the limit state of isotropic compression. EPL 114(1), 14004 (2016). ADSCrossRefGoogle Scholar
  20. 20.
    Puckett, J., Lechenault, F., Daniels, K.: Local origins of volume fraction fluctuations in dense granular materials. Phys. Rev. E 83(4), 041301 (2011). ADSCrossRefGoogle Scholar
  21. 21.
    Radjai, F., Dubois, F. (eds.): Discrete-Element Modeling of Granular Materials, 1st edn. Wiley, New York (2011)Google Scholar
  22. 22.
    Radjai, F., Roux, S., Moreau, J.: Contact forces in a granular packing. Chaos 9(1), 544 (1999). ADSCrossRefMATHGoogle Scholar
  23. 23.
    Saadatfar, M., Sheppard, A., Senden, T., Kabla, A.: Mapping forces in a 3d elastic assembly of grains. J. Mech. Phys. Solids 60(1), 55 (2012). ADSCrossRefMATHGoogle Scholar
  24. 24.
    Snoeijer, J., Vlugt, T., Ellenbroek, W., van Hecke, M., van Leeuwen, J.: Ensemble theory for force networks in hyperstatic granular matter. Phys. Rev. E 70(6), 061306 (2004). ADSCrossRefGoogle Scholar
  25. 25.
    Snoeijer, J., Vlugt, T., van Hecke, M., van Saarloos, W.: Force network ensemble: A new approach to static granular matter. Phys. Rev. Let. 92(5), 054302 (2004). ADSCrossRefGoogle Scholar
  26. 26.
    Tighe, B., van Eerd, A., Vlugt, T.: Entropy maximization in the force network ensemble for granular solids. Phys. Rev. Lett. 100(23), 238001 (2008). ADSCrossRefGoogle Scholar
  27. 27.
    Tighe, B., Snoeijer, J., Vlugt, T., van Hecke, M.: The force network ensemble for granular packings. Soft Matter 6(13), 2908 (2010). ADSCrossRefGoogle Scholar
  28. 28.
    Tighe, B., Socolar, J., Schaeffer, D., Mitchener, G., Huber, M.: Force distributions in a triangular lattice of rigid bars. Phys. Rev. E 72(3), 031306 (2005). ADSCrossRefGoogle Scholar
  29. 29.
    Tighe, B., Vlugt, T.: Force balance in canonical ensembles of static granular packings. J. Stat. Mech. Theory Exp. 2010(1), P01015 (2010). CrossRefGoogle Scholar
  30. 30.
    Vlugt, T., Tighe, B.: Stress fluctuations in granular force networks. J.Stat. Mech. 2011(04), 04002 (2011). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Manuel A. Cárdenas-Barrantes
    • 1
  • Jose Daniel Muñoz
    • 1
  • William F. Oquendo
    • 1
    • 2
  1. 1.Simulation of Physical Systems Group, Department of PhysicsUniversidad Nacional de ColombiaBogotá D.C.Colombia
  2. 2.Department of Mathematics, Physics, and Statistics, Faculty of EngineeringUniversidad de la SabanaChíaColombia

Personalised recommendations