Granular Matter

, 20:4 | Cite as

Study of sedimentation of non-cohesive particles via CFD–DEM simulations

  • Shan-lin Xu
  • Rui Sun
  • Yuan-qiang Cai
  • Hong-lei Sun
Original Paper


The sedimentation process of granular materials exists ubiquitously in nature and many fields which involve the solid–liquid separation. This paper employs the coupled computational fluid dynamics and discrete element method (CFD–DEM) to investigate the sedimentation process of non-cohesive particles, including the hindered settling stage and the deposition stage. Firstly, the coupled CFD–DEM model for sedimentation is validated by the hindered settling velocity at different solid volume concentrations of suspension \(\phi _{0} \), i.e., \(\phi _0 =\) 0.05–0.6. Two typical modes of sedimentation are also presented by the concentration profiles and the equal-concentration lines. Then, the comparisons between mono- and poly-dispersed particle system are detailed. In the sedimentation of the poly-dispersed particle system, the segregation phenomenon is simulated. Furthermore, this segregation effect reduces with the increase of the initial solid concentration of suspension. From the simulations, the contact force between every pair of particles can be obtained, hence we demonstrate the “effective stress principle” from the view of the particle contact force by giving the correspondence between the particle contact force and the “effective stress”, which is a critical concept of soil mechanics. Moreover, the deposition stage can be simulated by CFD–DEM method, therefore the solid concentrations of sediment bed \(\phi _{\mathrm{max}} \) on different conditions are studied. Based on the simulation results of \(\phi _{\mathrm{max}} \) and the theory of sedimentation, this paper also discusses a method to calculate the critical time when sedimentation ends of two typical modes of sedimentation.


Sedimentation Hindered settling CFD–DEM Effective stress Sediment bed density Critical time 



The research described here was funded by the National key research and development program funded by Ministry of Science and Technology, Grant Number is 2016YFC0800207; and the Projects of International Cooperation and Exchanges NSFC (National Natural Science Foundation of China), Grant Number is 51620105008.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Richardson, J.E., Zaki, W.N.: Sedimentation and fluidisation: part I. ICE 32, S82–S100 (1954). Google Scholar
  2. 2.
    Kirpalani, D.M., Matsuoka, A.: CFD approach for simulation of bitumen froth settling process—part I: hindered settling of aggregates. Fuel 87, 380–387 (2008). CrossRefGoogle Scholar
  3. 3.
    Basson, D.K., Berres, S., Bürger, R.: On models of polydisperse sedimentation with particle-size-specific hindered-settling factors. Appl. Math. Model. 33, 1815–1835 (2009). MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chauchat, J., Guillou, S., Pham Van Bang, D., Dan Nguyen, K.: Modelling sedimentation-consolidation in the framework of a one-dimensional two-phase flow model. J. Hydraul. Res. 51, 293–305 (2013). CrossRefGoogle Scholar
  5. 5.
    Kynch, G.J.: A theory of sedimentation. Trans. Faraday Soc. 48, 166 (1952). CrossRefGoogle Scholar
  6. 6.
    Dankers, P.J.T., Winterwerp, J.C.: Hindered settling of mud flocs: theory and validation. Cont. Shelf Res. 27, 1893–1907 (2007). CrossRefADSGoogle Scholar
  7. 7.
    Bustos, M.C., Concha, F.: On the construction of global weak solutions in the Kynch theory of sedimentation. Math. Methods Appl. Sci. 10, 245–264 (1988)MathSciNetCrossRefMATHADSGoogle Scholar
  8. 8.
    Bustos, M.C., Concha, F., BUrger, R., Tory, E.M.: Mathematical Modelling: Theory and Applications, Sedimentation and thickening: Phenomenological Foundation and Mathematical Theory, vol. 8, Springer Science & Business Media (1999)Google Scholar
  9. 9.
    Kranenburg, C.: Hindered Settling and Consolidation of Mud-Analytical Results, pp. 11–92. Delft University of Technology, Delft (1992)Google Scholar
  10. 11.
    Garside, J., Al-Dibouni, M.R.: Velocity–voidage relationships for fluidization and sedimentation in solid–liquid systems. Ind. Eng. Chem. Process Des. Dev. 16, 206–214 (1977). CrossRefGoogle Scholar
  11. 12.
    Khan, A.R., Richardson, J.F.: Fluid-particle interactions and flow characteristics of fluidized beds and settling suspensions of spherical particles. Chem. Eng. Commun. 78, 111–130 (1989). CrossRefGoogle Scholar
  12. 13.
    Di Felice, R.: The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 20, 153–159 (1994). CrossRefMATHGoogle Scholar
  13. 14.
    Wachmann, B., Kalthoff, W., Schwarzer, S., Herrmann, H.J.: Collective drag and sedimentation: comparison of simulation and experiment in two and three dimensions. Granul. Matter 1(2), 75–82 (1998)CrossRefGoogle Scholar
  14. 15.
    Kalthoff, W., Schwarzer, S., Herrmann, H.: Algorithm for the simulation of particle suspensions with inertia effects. Phys. Rev. E 56(2), 2234 (1997)CrossRefADSGoogle Scholar
  15. 16.
    Zhang, J.F., Zhang, Q.H.: Lattice boltzmann simulation of the flocculation process of cohesive sediment due to differential settling. Cont. Shelf Res. 31, S94–S105 (2011). CrossRefGoogle Scholar
  16. 17.
    Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J.: Coupled DEM–LBM method for the free-surface simulation of heterogeneous suspensions. Comput. Part. Mech. 1(1), 3–13 (2014)CrossRefGoogle Scholar
  17. 18.
    Balakin, B.V., Hoffmann, A.C., Kosinski, P., Rhyne, L.D.: Eulerian–Eulerian CFD model for the sedimentation of spherical particles in suspension with high particle concentrations. Eng. Appl. Comput. Fluid Mech. 4(1), 116–126 (2014). Google Scholar
  18. 19.
    Zhao, T., Houlsby, G.T., Utili, S.: Investigation of granular batch sedimentation via DEM–CFD coupling. Granul. Matter 16, 921–932 (2014). CrossRefGoogle Scholar
  19. 20.
    Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007). CrossRefGoogle Scholar
  20. 21.
    Sun, R., Xiao, H.: SediFoam: a general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Comput. Geosci. 89, 207–219 (2016). CrossRefADSGoogle Scholar
  21. 22.
    Xiao, H., Sun, J.: Algorithms in a robust hybrid CFD–DEM solver for particle-laden flows. Commun. Comput. Phys. 9, 297–323 (2011)CrossRefMATHGoogle Scholar
  22. 23.
    Sun, R., Xiao, H.: Diffusion-based coarse graining in hybrid continuum-discrete solvers: theoretical formulation and a priori tests. Int. J. Multiph. Flow 77, 142–157 (2015)MathSciNetCrossRefGoogle Scholar
  23. 24.
    Gupta, P., Sun, J., Ooi, J.Y.: DEM–CFD simulation of a dense fluidized bed: wall boundary and particle size effects. Powder Technol. 293, 37–47 (2015). CrossRefGoogle Scholar
  24. 25.
    Sun, R., Xiao, H.: CFD–DEM simulations of current-induced dune formation and morphological evolution. Adv. Water Resour. 92, 228–239 (2016). CrossRefADSGoogle Scholar
  25. 26.
    Anderson, T.B., Jackson, R.O.Y.: A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6, 527–539 (1967). CrossRefGoogle Scholar
  26. 27.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  27. 28.
    Sun, J., Battaglia, F., Subramaniam, S.: Hybrid two-fluid DEM simulation of gas–solid fluidized beds. J. Fluids Eng. 129, 1394–1403 (2007). CrossRefGoogle Scholar
  28. 29.
    Tory, E.M., BUrger, R., Concha, F., Bustos, M.C.: Sedimentation and thickening: Phenomenological foundation and mathematical theory, vol. 8, , Springer Science & Business Media (2013)Google Scholar
  29. 30.
    Schmeeckle, M.W.: Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119, 1240–1262 (2014). CrossRefADSGoogle Scholar
  30. 31.
    Gupta, P.: Verification and validation of a DEM–CFD model and multiscale modelling of cohesive fluidization regimes. PhD Thesis (2015)Google Scholar
  31. 32.
    Hilton, J.E.Ã., Cleary, P.W.: The influence of particle shape on flow modes in pneumatic conveying. Chem. Eng. Sci. 66, 231–240 (2011). CrossRefGoogle Scholar
  32. 33.
    Xu, G.-Z., Gao, Y.-F., Hong, Z.-S., Ding, J.-W.: Sedimentation behavior of four dredged slurries in China. Mar. Georesour. Geotechnol. 30, 143–156 (2012). CrossRefGoogle Scholar
  33. 34.
    Baldock, T.E., Tomkins, M.R., Nielsen, P., Hughes, M.G.: Settling velocity of sediments at high concentrations. Coast. Eng. 51, 91–100 (2004). CrossRefGoogle Scholar
  34. 35.
    Di Felice, R.: Hydrodynamics of liquid fluidisation. Chem. Eng. Sci. 50(8), 1213–1245 (1995)CrossRefGoogle Scholar
  35. 36.
    Brown, P.P., Lawler, D.F.: Sphere drag and settling velocity revisited. J. Environ. Eng. 129, 222–231 (2003). CrossRefGoogle Scholar
  36. 37.
    Been, K., Sills, G.C.: Self-weight consolidation of soft soils: an experimental theoretical study. Geotechnique 31(4), 519–535 (1981)CrossRefGoogle Scholar
  37. 38.
    Zhang, R.J.: River Sediment Dynamics, 2nd edn. China Water & Power Press, Beijing (1989)Google Scholar
  38. 39.
    Sun, R., Xiao, H.: Diffusion-based coarse graining in hybrid continuum-discrete solvers: applications in CFD–DEM. Int. J. Multiph. Flow 72, 233–247 (2015). MathSciNetCrossRefGoogle Scholar
  39. 40.
    Terzaghi, K von: Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa 132, 125–138 (1923)Google Scholar
  40. 41.
    Drake, T.G., Calantoni, J.: Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res. Oceans 106(C9), 19859–19868 (2001). CrossRefADSGoogle Scholar
  41. 42.
    Cavarretta, I., Rocchi, I., Coop, M.R.: A new interparticle friction apparatus for granular materials. Can. Geotech. J 48, 1829–1840 (2011). CrossRefGoogle Scholar
  42. 43.
    Smith, W.O., Foote, P.D., Busang, P.F.: Packing of homogeneous spheres. Phys. Rev. 34, 1271–1274 (1929). CrossRefADSGoogle Scholar
  43. 44.
    Finn, J.R., Li, M., Apte, S.V.: Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. J. Fluid Mech. 796, 340–385 (2016). CrossRefADSGoogle Scholar
  44. 45.
    McGeary, R.K.: Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44, 513–522 (1961). CrossRefGoogle Scholar
  45. 46.
    Fitch, B.: Kynch theory and compression zones. AIChE J. 29(6), 940–947 (1983)CrossRefGoogle Scholar
  46. 47.
    Tomkins, M.R., Baldock, T.E., Nielsen, P.: Hindered settling of sand grains. Sedimentology 52, 1425–1432 (2005). CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shan-lin Xu
    • 1
  • Rui Sun
    • 2
  • Yuan-qiang Cai
    • 1
  • Hong-lei Sun
    • 3
  1. 1.Research Center of Coastal and Urban Geotechnical Engineering, College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  2. 2.Department of Aerospace and Ocean EngineeringVirginia TechBlacksburgUSA
  3. 3.Institute of Disaster Prevention Engineering, College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina

Personalised recommendations