Skip to main content
Log in

Coupling of FEM and DEM simulations to consider dynamic deformations under particle load

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Coupled FEM–DEM simulations enable the direct analysis of the load, the deformation and the stresses inside machine parts which interact with bulk materials. The analysis of large deformations of elastic parts is interesting as the deformation will significantly influence the bulk material behaviour. In this paper a bidirectional coupling method for the FEM software \(\hbox {ANSYS}^\circledR \) Classic and the DEM software \(\hbox {LIGGGHTS}^\circledR \) is presented. The coupling algorithm was verified and validated using a modified draw down test rig. The results from the experimental investigations and the FEM–DEM simulations are compared. A very good correlation between experiments and simulations could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area, \(\hbox {mm}^{2}\)

\(b_{\mathrm{out}}\) :

Width of the outlet, mm

\(d_{\mathrm{k}}\) :

Grain size distribution, mm

\(D_{\mathrm{part}}\) :

Particle distribution, mm

E :

Young modulus of the steel sheet samples, \(\hbox {N/mm}^{2}\)

\(E_{\mathrm{part}}\) :

Particle young modulus, \(\hbox {N/mm}^{2}\)

\(\mathbf{f }\) :

Element force vector

\(\mathbf{f}_{\mathrm{p} }\) :

Volume load vector

\(h_{\mathrm{max}}\) :

Transfer height, mm

\(I_{\mathrm{m}}\) :

Mass flow rate, t/h

K :

Element stiffness matrix

\({L}_{\mathrm{ELEM}}\) :

Finite element edge length, mm

\(l_{\mathrm{LMP}}\) :

Measurement positions, mm

\(l_{\mathrm{out}}\) :

Length of the outlet, mm

\(m_{\mathrm{total}}\) :

Bulk material total mass, kg

\(\mathbf{p}_{\mathrm{\mathbf{k}}}\) :

Vector for the element node loads

p :

Pressure, N/mm\(^{2}\)

t :

Time, s

\(t_{\mathrm{elem }}\) :

Element thickness, mm

\(t_{\mathrm{KL}}\) :

Flap opening time, s

\(t_{\mathrm{sample}}\) :

Thickness of the steel sheet samples, mm

\(t_{\mathrm{sim}}\) :

Simulation time, s

v :

displacement vector

v :

Poisson ratio, -

\(v_{\mathrm{c}}\) :

Contact velocity, m/s

\(v_{\mathrm{exp}}\) :

Maximum deformation during the experimental test, mm

\(v_{\mathrm{sim}}\) :

Maximum deformation during the analogues FEM–DEM simulation, mm

\(\Delta t_{\mathrm{DEM}}\) :

DEM timestep, s

\(\Delta t_{\mathrm{FEM}}\) :

FEM timestep, s

\(\Delta v\) :

Average of deformation, mm

\(\varepsilon \) :

Porosity, -

\(\mu _{\mathrm{P}}\) :

Coulomb friction coefficient, -

\(\mu _{\mathrm{R}}\) :

Rolling friction coefficient, -

\(\mu _{\mathrm{w, perspex}}\) :

Wall friction coefficient between bulk material and Perspex, -

\(\mu _{\mathrm{w, sample}}\) :

Wall friction coefficient between bulk material and steel sheet, -

\(\rho \) :

Material density of the steel sheet beams, \(\hbox {kg/m}^{3}\)

\(\rho _{\mathrm{b}}\) :

Bulk material density, \(\hbox {kg/m}^{3}\)

\(\varphi _{\mathrm{b,stat}}\) :

Angle of repose, \({^{\circ }}\)

References

  1. Katterfeld, A., Dratt, M., Wheeler, C.A.: Coupling ANSYS and PFC\(^{3D}\) for the simulation of the conveyor belt deflection. In: Continuum and Distinct Element Numerical Modeling in Geomechanics, Proceedings of the 2nd International FLAC/DEM Symposium. Itasca Consulting Group, Melbourne (2011)

  2. Dratt, M., Katterfeld, A., Wheeler, C.A.: Determination of the bulk flexure resistance via coupled FEM–DEM simulation. In: Bulk Solids Handling, no. 3, pp. 50–58. WoMa Media, Clausthal-Zellerfeld (2015)

  3. Munjiza, A.: The Combined Finite-Discrete Element Method, 1st edn. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  4. Labra, C., Rojek, J., Oñate, E.: Adaptive discrete/finite element coupling for rock cutting process simulations. In: Munjiza, A. (ed.) Discrete Element Methods. Simulations of Discontinua: Theory and Applications, pp. 428–433. Queen Mary University, London (2010)

    Google Scholar 

  5. Rojek, J., Oñate, E.: Multiscale analysis using a coupled discrete/finite element model. Interact. Multiscale Mech. 1(1), 1–31 (2007)

    Article  Google Scholar 

  6. Lu, X., Lin, X., Ye, L.: Simulation of structural collapse with coupled finite element-discrete element method. In: Yuan, Y., Cui, J., Mang, H. A. (eds.) Computational Structural Engineering, pp. 127–135. Springer, Shanghai (2009)

  7. Villard, P., Chevalier, B., Le Hello, B., Combe, G.: Coupling between finite and discrete element methods for modeling of earth structures reinforced by geosynthetic. Comput. Geotech. Elsevier 36, 709–717 (2009)

    Article  Google Scholar 

  8. Wellmann, C., Wriggers, P.: A coupled 3D discrete-finite element method for the simulation of granular materials and their interaction with solid structures. In: Proceedings in Applied Mathematics and Mechanics (PAMM), vol. 8, pp. 10353–10354. Wiley, Weinheim (2008)

  9. Wellmann, C., Lillie, C., Wriggers, P.: A coupled discrete-finite element method modeling the interactions of granular materials and solid structures. In: 8th Word Congress on Computational Mechanics (WCCM8), 5th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2008), Venice (2008)

  10. Stránský, J., Jirásek, M.: Open source FEM–DEM coupling. In: 18th International Conference Engineering Mechanics, pp. 1237–1251, Svratka (2012)

  11. Michael, M., Vogel, F., Peters, B.: XDEM–FEM coupling of the intersections between a tire tread and granular terrain. Comput. Methods Appl. Mech. Eng. Elsevier 289, 227–248 (2015)

    Article  ADS  Google Scholar 

  12. Müller, G., Groth, C.: FEM für Praktiker Band 1: Grundlagen, 8th edn. Expert Verlag, Renningen (2007)

    Google Scholar 

  13. Klein, B.: Grundlagen und Anwendungen der Finite Elemente Methode im Maschinen- und Fahrzeugbau, 7th edn. Vieweg Verlag, Wiesbaden (2007)

    Google Scholar 

  14. Betten, Josef: Finite Elemente für Ingenieure 1&2. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  15. Dratt, M., Katterfeld, A., Wheeler, C.A.: Prediction of belt deflection by coupling of FEM and DEM simulations. In: Bulk Solids Handling, vol. 30, no. 7, pp. 380–384. Vogel Business Media, Würzburg (2010)

  16. Bathe, K.-J.: Finite-Elemente-Methoden, 2nd edn. Springer, Berlin (2009)

    Google Scholar 

  17. Dratt, M.: Kopplung von FEM- und DEM-Simulationen zur Analyse der Gut-Bauteil-Interaktion in der Fördertechnik. Otto-von-Guericke-Universität Magdeburg, PhD Thesis (2016)

  18. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Ministry of Research and Education for the financial support of the research project “SimBa” (01 IS 13 006 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Katterfeld.

Additional information

This article is part of the Topical Collection on: Understanding granular media - from fundamentals and simulations to industrial application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dratt, M., Katterfeld, A. Coupling of FEM and DEM simulations to consider dynamic deformations under particle load. Granular Matter 19, 49 (2017). https://doi.org/10.1007/s10035-017-0728-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0728-3

Keywords

Navigation