Skip to main content
Log in

DEM modeling of shear bands in crushable and irregularly shaped granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A method of modeling convex or concave polygonal particles is proposed. DEM simulations of shear banding in crushable and irregularly shaped granular materials are presented in this work. Numerical biaxial tests are conducted on an identical particle assembly with varied particle crushability. The particle crushing is synchronized with the development of macroscopic stress, and the evolution of particle size distribution can be characterized by fractal dimension. The shear banding pattern is sensitive to particle crushability, where one shear band is clearly visible in the uncrushable assembly and X-shaped shear bands are evident in the crushable assembly. There are fewer branches of strong force chains and weak confinement inside the shear bands, which cause the particles inside the shear bands to become vulnerable to breakage. The small fragments with larger rotation magnitudes inside the shear bands form ball-bearing to promote the formation of shear bands. While there are extensive particle breakages occurring, the ball-bearing mechanism will lubricate whole assembly. With the increase of particle crushability the shear band formation is suppressed and the shear resistance of the assembly is reduced. The porosity inside the shear bands are related to the particle crushability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chu, J., Lo, S.C.R., Lee, I.K.: Strain softening and shear band formation of sand in multi-axial testing. Geotechnique 46(1), 63–82 (1996)

    Article  Google Scholar 

  2. Wang, Q., Lade, P.V.: Shear banding in true triaxial tests and its effect on failure in sand. J. Eng. Mech. 127(8), 754–761 (2001)

    Article  Google Scholar 

  3. Sadrekarimi, A., Olson, S.M.: Shear band formation observed in ring shear tests on sandy soils. J. Geotech. Geoenviron. Eng. 136(2), 366–375 (2009)

    Article  Google Scholar 

  4. Röchter, L., König, D., Schanz, T., et al.: Shear banding and strain softening in plane strain extension: physical modelling. Granul. Matter 12(3), 287–301 (2010)

    Article  Google Scholar 

  5. Chiaro, G., Kiyota, T., Koseki, J.: Strain localization characteristics of loose saturated Toyoura sand in undrained cyclic torsional shear tests with initial static shear. Soils Found. 53(1), 23–34 (2013)

    Article  Google Scholar 

  6. Lade, P.V., Van Dyck, E., Rodriguez, N.M.: Shear banding in torsion shear tests on cross-anisotropic deposits of fine Nevada sand. Soils Found. 54(6), 1081–1093 (2014)

    Article  Google Scholar 

  7. Desrues, EdwardAndò: Strain localisation in granular media. Comptes Rendus Physique 16, 26–36 (2015)

    Article  ADS  Google Scholar 

  8. Hasan, A., Alshibli, K.A.: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Géotechnique 60(5), 369–379 (2010)

    Article  Google Scholar 

  9. Hall, S.A., Bornert, M., Desrues, J., et al.: Discrete and continuum analysis of localised deformation in sand using X-ray \(\mu \)CT and volumetric digital image correlation. Géotechnique 60(5), 315–322 (2010)

    Article  Google Scholar 

  10. Hall, S.A., Desrues, J., Viggiani, G., et al.: Experimental characterisation of (localised) deformation phenomena in granular geomaterials from sample down to inter-and intra-grain scales. Procedia IUTAM 4, 54–65 (2012)

    Article  Google Scholar 

  11. Zhuang, L., Nakata, Y., Kim, U.G., et al.: Influence of relative density, particle shape, and stress path on the plane strain compression behavior of granular materials. Acta Geotech. 9(2), 241–255 (2014)

    Article  Google Scholar 

  12. Bardet, J.P., Proubet, J.: A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique 41(4), 599–613 (1991)

    Article  Google Scholar 

  13. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1), 192–205 (2000)

    Article  Google Scholar 

  14. Hu, N., Molinari, J.F.: Shear bands in dense metallic granular materials. J. Mech. Phys. Solids 52(3), 499–531 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Wang, D.M., Zhou, Y.H.: Discrete element simulation of localized deformation in stochastic distributed granular materials. Sci. China Ser. G Phys. Mech. Astron. 51(9), 1403–1415 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Evans, T.M., Frost, J.D.: Multiscale investigation of shear bands in sand: physical and numerical experiments. Int. J. Numer. Anal. Meth. Geomech. 34(15), 1634–1650 (2010)

    MATH  Google Scholar 

  17. Jiang, M.J., Yan, H.B., Zhu, H.H., et al.: Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38(1), 14–29 (2011)

    Article  Google Scholar 

  18. Fu, P., Dafalias, Y.F.: Quantification of large and localized deformation in granular materials. Int. J. Solids Struct. 49(13), 1741–1752 (2012)

    Article  Google Scholar 

  19. Gu, X., Huang, M., Qian, J.: Discrete element modeling of shear band in granular materials. Theor. Appl. Fract. Mech. 72, 37–49 (2014)

    Article  Google Scholar 

  20. de Bono, J.P., McDowell, G.R.: An insight into the yielding and normal compression of sand with irregularly-shaped particles using DEM. Powder Technol. 271, 270–277 (2015)

    Article  Google Scholar 

  21. Wiacek, J., Molenda, M., Horabik, J., et al.: Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling. Powder Technol. 217, 435–442 (2012)

    Article  Google Scholar 

  22. Jiang, M., Zhang, W.: DEM analyses of shear band in granular materials. Eng. Comput. 32(4), 985–1005 (2015)

    Article  Google Scholar 

  23. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  24. Alonso-Marroquin, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. EPL (Europhys. Lett.) 83(1), 14001 (2008)

    Article  ADS  Google Scholar 

  25. Wang, L., Park, J.Y., Fu, Y.: Representation of real particles for DEM simulation using X-ray tomography. Constr. Build. Mater. 21(2), 338–346 (2007)

    Article  Google Scholar 

  26. Indraratna, B., Thakur, P.K., Vinod, J.S.: Experimental and numerical study of railway ballast behavior under cyclic loading. Int. J. Geomech. 10(4), 136–144 (2009)

    Article  Google Scholar 

  27. Yan, Y., Zhao, J., Ji, S.: Discrete element analysis of breakage of irregularly shaped railway ballast. Geomech. Geoeng. 10(1), 1–9 (2015)

    Article  Google Scholar 

  28. Zhou, W., Ma, G., Chang, X., et al.: Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM. J. Eng. Mech. 139(12), 1868–1873 (2013)

    Article  Google Scholar 

  29. Garcia, X., Latham, J.P., Xiang, J., et al.: A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Geotechnique 59(9), 779–784 (2009)

    Article  Google Scholar 

  30. Shamsi, M.M.M., Mirghasemi, A.A.: Numerical simulation of 3D semi-real-shaped granular particle assembly. Powder Technol. 221, 431–446 (2012)

    Article  Google Scholar 

  31. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1–2), 69–80 (2007)

    Google Scholar 

  32. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13(4), 417–428 (2011)

    Article  Google Scholar 

  33. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–642 (2003)

    Article  Google Scholar 

  34. Lim, W.L., McDowell, G.R.: Discrete element modelling of railway ballast. Granul. Matter 7(1), 19–29 (2005)

    Article  MATH  Google Scholar 

  35. Hanley, K.J., O’Sullivan, C., Oliveira, J.C., et al.: Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 210(3), 230–240 (2011)

    Article  Google Scholar 

  36. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element model predicting the strength of ballast stones. Comput. Struct. 108, 3–13 (2012)

    Article  Google Scholar 

  37. Bagi, K., Kuhn, M.R.: A definition of particle rolling in a granular assembly in terms of particle translations and rotations. J. Appl. Mech. 71(4), 493–501 (2004)

    Article  ADS  MATH  Google Scholar 

  38. Itasca Consulting Group Inc. Particle flow code in 2 dimensions, version 3.1. Minnesota, USA (2004)

  39. Zhou, W., Yang, L., Ma, G., et al.: DEM analysis of the size effects on the behavior of crushable granular materials. Granul. Matter 18(3), 1–11 (2016)

    Article  ADS  Google Scholar 

  40. Tsoungui, O., Vallet, D., Charmet, J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105(1), 190–198 (1999)

    Article  Google Scholar 

  41. Åström, J.A., Herrmann, H.J.: Fragmentation of grains in a two-dimensional packing. Eur. Phys. J. B-Condens. Matter Complex Syst. 5(3), 551–554 (1998)

    Article  Google Scholar 

  42. Lobo-Guerrero, S., Vallejo, L.E.: Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granul. Matter 8(3–4), 195–204 (2006)

    Article  Google Scholar 

  43. Åström, J.A., Herrmann, H.J., Timonen, J.: Granular packings and fault zones. Phys. Rev. Lett. 84(4), 638 (2000)

    Article  ADS  Google Scholar 

  44. Alonso-Marroquin, F., Herrmann, H.J.: Calculation of the incremental stress–strain relation of a polygonal packing. Phys. Rev. E 66(2), 021301 (2002)

    Article  ADS  Google Scholar 

  45. Alonso-Marroquin, F., Luding, S., Herrmann, H.J., et al.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71(5), 051304 (2005)

    Article  ADS  Google Scholar 

  46. Wang, J., Yan, H.: On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int. J. Numer. Anal. Meth. Geomech. 37(8), 832–854 (2013)

  47. de Bono, J.P., McDowell, G.R., Wanatowski, D.: Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Géotech. Lett. 2(4), 199–203 (2012)

  48. Miura, N., O-hara, S.: Particle-crushing of a decomposed granite soil under shear stresses. Soils Found. 19(3), 1–14 (1979)

    Article  Google Scholar 

  49. Turcotte, D.L.: Fractals and fragmentation. J. Geophys. Res. Solid Earth 91(B2), 1921–1926 (1986)

    Article  Google Scholar 

  50. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Géotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  51. Han, C., Drescher, A.: Shear bands in biaxial tests on dry coarse sand. Soils Found. 33(1), 118–132 (1993)

    Article  Google Scholar 

  52. Ma, G., Zhou, W., Chang, X., et al.: Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution. Powder Technol. 301, 118–130 (2016)

    Article  Google Scholar 

  53. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  ADS  Google Scholar 

  54. Herrmann, H.J., Mantica, G., Bessis, D.: Space-filling bearings[J]. Phys. Rev. Lett. 65(26), 3223–3226 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Baram, R.M., Herrmann, H.J., Rivier, N.: Space-filling bearings in three dimensions. Phys. Rev. Lett. 92(4), 044301 (2004)

    Article  ADS  Google Scholar 

  56. Åström, J.A., Timonen, J.: Spontaneous formation of densely packed shear bands of rotating fragments. Eur. Phys. J. E 35(5), 1–5 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51322905, 51509190, and 51579193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ma.

Ethics declarations

Conflict of interest

The all authors declare that no conflict of interest exits in the submission of this manuscript and it is compliance with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, L., Ma, G. et al. DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granular Matter 19, 25 (2017). https://doi.org/10.1007/s10035-017-0712-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0712-y

Keywords

Navigation