Skip to main content
Log in

Modeling soft granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Soft-grain materials such as clays and other colloidal pastes share the common feature of being composed of grains that can undergo large deformations without rupture. For the simulation of such materials, we present two alternative methods: (1) an implicit formulation of the material point method (MPM), in which each grain is discretized as a collection of material points, and (2) the bonded particle model (BPM), in which each soft grain is modeled as an aggregate of rigid particles using the contact dynamics method. In the MPM, a linear elastic behavior is used for the grains. In order to allow the aggregates in the BPM to deform without breaking, we use long-range center-to-center attraction forces between the primary particles belonging to each grain together with steric repulsion at their contact points. We show that these interactions lead to a plastic behavior of the grains. Using both methods, we analyze the uniaxial compaction of 2D soft granular packings. This process is nonlinear and involves both grain rearrangements and large deformations. High packing fractions beyond the jamming state are reached as a result of grain shape change for both methods. We discuss the stress-strain and volume change behavior as well as the evolution of the connectivity of the grains. Similar textures are observed at large deformations although the BPM requires higher stress than the MPM to reach the same level of packing fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev.E (Stat. Nonlinear Soft Matter Phys.) 76, 061304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Antonyuk, S., Khanal, M., Tomas, J., Heinrich, S., Mörl, L.: Impact breakage of spherical granules: experimental study and dem simulations. Chem. Eng. Process. 45, 838–856 (2006)

    Article  Google Scholar 

  3. Azéma, E., Radjai, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81, 051304 (2010)

    Article  ADS  Google Scholar 

  4. Azéma, E., Radjai, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 76, 011301 (2007)

    Article  ADS  Google Scholar 

  5. Bardenhagen, S., Brackbill, J., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)

    Article  ADS  MATH  Google Scholar 

  6. Bolton, M.D., N, Y., Cheng, P.: Micro- and macro-mechanical behaviour of dem crushable materials. Géotechnique 58, 471–480 (2008)

    Article  Google Scholar 

  7. Bonnecaze, R., Cloitre, M.: Micromechanics of soft particle glasses. Adv. Polym. Sci. 236, 117–161 (2010)

    Article  Google Scholar 

  8. Bratberg, I., Radjai, F., Hansen, A.: Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds. Phys. Rev. E 66(031), 031303 (2002)

    Article  ADS  Google Scholar 

  9. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  MATH  Google Scholar 

  10. Cummins, S., Brackbill, J.: An implicit particle-in-cell method for granular materials. J. Comput. Phys. 180, 506–548 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Estrada, N., Taboada, A., Radjai, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78, 021301 (2008)

    Article  ADS  Google Scholar 

  12. Guilkey, J., Weiss, J.: Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element method. Int. J. Numer. Methods Eng. 57, 1323–1338 (2003)

    Article  MATH  Google Scholar 

  13. Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85, 498–517 (2011)

    Article  MATH  Google Scholar 

  14. Ioannidou, K., Pellenq, R., Gado, E.D.: Controlling local packing and growth in calcium-silicate-hydrate gels. Soft Matter 10, 1121 (2014)

    Article  ADS  Google Scholar 

  15. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (1993)

    Google Scholar 

  16. Jean, M.: Frictional contact in rigid or deformable bodies: numerical simulation of geomaterials. In: Salvadurai, A., Boulon, J. (eds.) Mechanics of Geomaterial Interfaces, pp. 463–486. Elsevier Science Publisher, Amsterdam (1995)

    Chapter  Google Scholar 

  17. Kabla, A.: Collective cell migration: leadership, invasion and segregation. J. R. Soc. Interface 9, 3268–3278 (2012)

    Article  Google Scholar 

  18. Lepesanta, P., Bohera, C., Berthierb, Y., Rézai-Ariaa, F.: A phenomenological model of the third body particles circulation in a high temperature contact. Wear 298–299, 66–79 (2013)

    Article  Google Scholar 

  19. Liu, L., Kafui, K., Thornton, C.: Impact breakage of spherical, cuboidal and cylindrical agglomerates. Powder Technol. 199, 189–196 (2010)

    Article  Google Scholar 

  20. Lorenzo, G., Zartizky, N., Califano, A.: Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocoll. 30, 672–680 (2013)

    Article  Google Scholar 

  21. Ma, G., Zhou, W., Chang, X.L.: Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput. Geotech. 61, 132–143 (2014)

    Article  Google Scholar 

  22. Makse, H.A., Johnson, D., Schwartz, L.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    Article  ADS  Google Scholar 

  23. Menut, P., Seiffert, S., Sprakelae, J., Weitz, D.: Does size matter? elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012)

    Article  ADS  Google Scholar 

  24. Moreau, J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A. Solids 13, 93–114 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Moreau, J.J.: Evolution problem associated with a moving convex set in a hilbert space. J. Differ. Equ. 26, 347–374 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Moreau, J.J.: Bounded variation in time. In: Panagiotopoulos, P., Strang, G. (eds.) Topics in Nonsmooth Mechanics, pp. 1–74. Bikhäuser, Basel (1988)

    Google Scholar 

  27. Moreno, R., Ghadiri, M., Antony, S.: Effect of the impact angle on the breakage of agglomerates: a numerical study using dem. Powder Technol. 130, 132–137 (2003)

    Article  Google Scholar 

  28. Nezamabadi, S., Radjai, F., Averseng, J., Delenne, J.Y.: Implicit frictional-contact model for soft particle systems. J. Mech. Phys. Solids 83, 72–87 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Nguyen, D.H., Azéma, E., Sornay, P., Radjai, F.: Bonded-cell model for particle fracture. Phys. Rev. E 91, 022203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Peyneau, P.E., Roux, J.N.: Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008)

  31. Quezada, J.C., Breul, P., Saussine, G., Radjai, F.: Stability, deformation, and variability of granular fills composed of polyhedral particles. Phys. Rev. E 86, 031308 (2012)

    Article  ADS  Google Scholar 

  32. Radjai, F., Dubois, F.: Discrete Numerical Modelling of Granular Materials. Wiley-ISTE, Berlin (2011)

    Google Scholar 

  33. Radjai, F., Jean, M., Moreau, J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274 (1996)

    Article  ADS  Google Scholar 

  34. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 6715–728 (2009)

    Article  Google Scholar 

  35. Radjai, F., Roux, S.: Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89, 064302 (2002)

    Article  ADS  Google Scholar 

  36. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)

    Article  ADS  Google Scholar 

  37. Saint-Cyr, B., Delenne, J.Y., Voivret, C., Radjai, F., Sornay, P.: Rheology of granular materials composed of nonconvex particles. Phys. Rev. E 84, 041302 (2011)

    Article  ADS  Google Scholar 

  38. Sator, N., Mechkov, S., Sausset, F.: Generic behaviours in impact fragmentation. Europhys. Lett. 81, 44002 (2008)

    Article  ADS  Google Scholar 

  39. Silbert, L.E., Grest, G.S., Brewster, R., Levine, A.J.: Rheology and contact lifetimes in dense granular flow. Phys. Rev. Lett. 99, 068002 (2007)

    Article  ADS  Google Scholar 

  40. Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: The role of gravity or pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028 (2015)

    Article  ADS  Google Scholar 

  41. Staron, L., Vilotte, J.P., Radjai, F.: Preavalanche instabilities in a granular pile. Phys. Rev. Lett. 89, 204302 (2002)

    Article  ADS  Google Scholar 

  42. Taboada, A., Chang, K.J., Radjai, F., Bouchette, F.: Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical test using the contact dynamics method. J. Geophys. Res. 110, 1–24 (2005)

    Article  Google Scholar 

  43. Taboada, A., Estrada, N., Radjaï, F.: Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett. 97, 098302 (2006)

    Article  ADS  Google Scholar 

  44. Thornton, C.: Force transmission in granular media. KONA Powder Part. 15, 81–90 (1997)

  45. Thornton, C., Yin, K.K., Adams, M.J.: Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D Appl. Phys. 29, 424–435 (1996)

    Article  ADS  Google Scholar 

  46. Torquato, S.: Random Heterogeneous Materials—Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  47. Wang, J., Yan, H.: On the role of particle breakage in the shear failure behavior of granular soils by dem. Int. J. Numer. Anal. Meth. Geomech. 37, 832–854 (2013)

    Article  Google Scholar 

  48. Wittel, F., Carmona, H., Kun, F., Herrmann, H.: Mechanisms in impact fragmentation. Int. J. Fract. 154, 105–117 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Farhang Radjai would like to acknowledge the support of the ICoME2 Labex (ANR-11-LABX-0053) and the A*MIDEX projects (ANR-11-IDEX-0001-02) cofunded by the French program Investissements d’Avenir, managed by the ANR, the French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Nezamabadi.

Ethics declarations

Conflict of interest

Saeid Nezamabadi, Thanh Hai Nguyen, Jean-Yves Delenne and Farhang Radjai state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezamabadi, S., Nguyen, T.H., Delenne, JY. et al. Modeling soft granular materials. Granular Matter 19, 8 (2017). https://doi.org/10.1007/s10035-016-0689-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0689-y

Keywords

Navigation