Friction and pressure-dependence of force chain communities in granular materials

Abstract

Granular materials transmit stress via a network of force chains. Despite the importance of these chains in characterizing the stress state and dynamics of the system, there is no common framework for quantifying their properties. Recently, attention has turned to the tools of network science as a promising route to such a description. In this paper, we apply a common network-science technique, community detection, to the force network of numerically-generated packings of spheres over a range of interparticle friction coefficients and confining pressures. In order to extract chain-like features, we use a modularity maximization with a recently-developed geographical null model (Bassett et al. in Soft Matter 11:2731–2744, 2015), and optimize the technique to detect sparse structures by minimizing the normalized convex hull ratio of the detected communities. We characterize the force chain communities by their size (number of particles), network force (interparticle forces), and normalized convex hull ratio (sparseness). We find that the first two are highly correlated and are therefore largely redundant. For both pressure P and interparticle friction \(\mu \), we observe two distinct transitions in behavior. One, for \(\mu \lesssim 0.1\) the packings exhibit more distinguishability to pressure than at higher \(\mu \). Two, we identify a transition pressure \(P^*\) at which the frictional dependence switches behaviors. Below \(P^*\) there are more large/strong communities at low \(\mu \), while above \(P^*\) there are more large/strong communities at high \(\mu \). We explain these phenomena by comparison to the spatial distribution of communities along the vertical axis of the system. These results provide new tools for considering the mesoscale structure of a granular system and pave the way for reduced descriptions based on the force chain structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Bassett, D.S., Owens, E.T., Porter, M.A., Manning, M.L., Daniels, K.E.: Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11, 2731–2744 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    Dantu, P.: Contribution l’étude méchanique et géométrique des milieux pulvérulents. In: Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, pp 144–148 (1957)

  3. 3.

    Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–5 (1995)

    ADS  Article  Google Scholar 

  4. 4.

    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    Newman, M.E.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Google Scholar 

  6. 6.

    Arévalo, R., Zuriguel, I., Maza, D.: Topology of the force network in the jamming transition of an isotropically compressed granular packing. Phys. Rev. E 81, 041302 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47, 624–639 (2010)

    Article  MATH  Google Scholar 

  8. 8.

    Walker, D., Tordesillas, A.: Taxonomy of granular rheology from grain property networks. Phys. Rev. E 85, 011304 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    Bassett, D.S., Owens, E.T., Daniels, K.E., Porter, M.A.: Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86, 041306 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    Peters, J., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    Zhang, L., Wu, J.-Q., Zhang, J.: Force-chain identification in quasi-2D granular systems. In: AIP Conference Proceedings, Powders and Grains, pp. 397–400 (2013)

  12. 12.

    Kondic, L., Goullet, A., O’Hern, C.S., Kramar, M., Mischaikow, K., Behringer, R.P.: Topology of force networks in compressed granular media. Europhys. Lett. 97, 54001 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    Kaczynski, T., Mischaikow, K.M., Mrozek, M.: Computational Homology. Springer, New York (2004)

    Google Scholar 

  14. 14.

    Radjai, F., Wolf, D., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)

    ADS  Article  Google Scholar 

  15. 15.

    Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56, 1082 (2009)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 103 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Navakas, R., Džiugys, A., Peters, B.: Application of graph community detection algorithms for identification of force clusters in squeezed granular packs. Modern Build. Mater. Struct. Tech. 1–4 (2010)

  18. 18.

    Navakas, R., Džiugys, A., Peters, B.: A community-detection based approach to identification of inhomogeneities in granular matter. Phys. A Stat. Mech. Appl. 407, 312–331 (2014)

    Article  Google Scholar 

  19. 19.

    Owens, E.T., Daniels, K.E.: Sound propagation and force chains in granular materials. Europhys. Lett. 94, 54005 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    Herrera, M., McCarthy, S., Slotterback, S., Cephas, E., Losert, W., Girvan, M.: Path to fracture in granular flows: dynamics of contact networks. Phys. Rev. E 83, 061303 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    Mukhopadhyay, S., Peixinho, J.: Packings of deformable spheres. Phys. Rev. E 84, 011302 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    Saadatfar, M., Sheppard, A.P., Senden, T.J., Kabla, A.J.: Mapping forces in a 3D elastic assembly of grains. J. Mech. Phys. Solids 60, 55–66 (2012)

    ADS  Article  MATH  Google Scholar 

  23. 23.

    Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. Commun. 6, 6361 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    LAMMPS. http://lammps.sandia.gov

  25. 25.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    ADS  Article  MATH  Google Scholar 

  26. 26.

    Chen, Y., Best, A., Butt, H.-J., Boehler, R., Haschke, T., Wiechert, W.: Pressure distribution in a mechanical microcontact. Appl. Phys. Lett. 88, 20–23 (2006)

    Google Scholar 

  27. 27.

    Silbert, L., Ertas, D., Grest, G., Halsey, T., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 031304 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Blumenfeld, R., Edwards, S.F., Ball, R.C.: Granular matter and the marginal rigidity state. J. Phys. Condens. Matter 17, 11 (2005)

    Article  Google Scholar 

  29. 29.

    Owens, E.T., Daniels, K.E.: Acoustic measurement of a granular density of modes. Soft Matter 9, 1214–1219 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    Jutla, I.S., Jeub, L.G.S., Mucha, P.J.: A generalized Louvain method for community detection implemented in MATLAB. http://netwiki.amath.unc.edu/GenLouvain

  31. 31.

    Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    Silbert, L.E.: Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    ADS  Article  Google Scholar 

  34. 34.

    Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72, 11301 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

  36. 36.

    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39, 1045–1049 (1895)

    Google Scholar 

Download references

Acknowledgments

We are grateful for support from the National Science Foundation (DMR-1206808) and the James S. McDonnell Foundation. The simulations were performed at the NC State High Performance Computing Center. We are grateful to Leo Silbert, Danielle Bassett, and Mason Porter for valuable conversations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen E. Daniels.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This research has been supported by the James S. McDonnell Foundation and the National Science Foundation (DMR-1206808).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Daniels, K.E. Friction and pressure-dependence of force chain communities in granular materials. Granular Matter 18, 85 (2016). https://doi.org/10.1007/s10035-016-0681-6

Download citation

Keywords

  • Force chains
  • Network community structure
  • Numerical simulations
  • Friction
  • Pressure