Skip to main content
Log in

New one-dimensional hydrodynamics of circulating fluidized bed risers

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A one-dimensional analysis of the hydrodynamics of circulating fluidized bed risers is performed following brand new mass and momentum balances for a gas–solids flow that the author has recently proposed. This analysis also includes a characteristic slip velocity between the phases derived from classical particle mechanics (the single particle equation). The predictions of the pressure drop and the solids holdup axial profiles, and the dense bed height are successfully compared with a rather limited amount of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\(A_p \) :

Projected area of the particle

\(C_D \) :

Drag coefficient

\(d_p \) :

Particle diameter

\(d_{ps}\) :

Mean surface diameter of the particles population

\(F_{D,p}\) :

Drag force on a single particle \(\gamma v^{2}\)

\(F_D^{\prime }\) :

Drag force per unit volume

\(F_{D,bed} \) :

Total drag force along the bed

g :

Gravitational constant

G :

Gas mass flux

\(G_s\) :

Solids mass flux

\(H_d\) :

Height of the dense bed

\(m_p\) :

Mass of the particle

\(N_p\) :

Number of particles per unit volume

p :

Gas pressure

r :

Radial coordinate with origin the bed vertical axis

Re :

Reynolds number \(\frac{\rho vd_p }{\mu }\)

u :

Gas velocity \(\frac{G}{\rho \left( {1-\varepsilon _s } \right) }\)

\(u_p\) :

Particle velocity i.e., characteristic one dimensional velocity of the population of particles

\(u_s \left( {r,z} \right) \) :

Local solids velocity

\(u_t\) :

Terminal velocity (for the mean surface diameter \(d_{ps} )\)

v :

Slip velocity i.e., characteristic one dimensional slip velocity of the population of particles derived from one dimensional Newton’s laws of motion, \(v=u-u_p \)

\(v_\gamma \) :

‘Friction’ velocity \(\sqrt{\frac{m_p \cdot g}{\gamma \left( {v,d_p } \right) }}\)

z :

Vertical coordinate (height), positive upwards and origin the gas distributor

\(\varepsilon _s\) :

Cross-sectional average of solids void fraction

\(\gamma \) :

Friction coefficient between gas and particles, \(\gamma =\gamma \left( {v,d_p } \right) \)

\(\rho \) :

Gas density

\(\rho _s\) :

Solids mass density

i :

Inlet

d :

Dense bed surface

o :

Outlet

\(\mathrm{R}\) :

Return line

References

  1. Kunii, D., Levenspiel, O.: Fluidization Engineering, 2nd edn. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  2. Grace, J.R., Avidan, A.A., Knowlton, T.M.: Circulating Fluidized Beds. Blackie Academic & Professional, New York (1997)

    Google Scholar 

  3. Lim, K.S., Zhu, J.X., Grace, J.R.: Hydrodynamics of gas–solid fluidization. Int. J. Multiphase Flow 21(Suppl), 141–193 (1995)

    Article  MATH  Google Scholar 

  4. Kunii, D., Levenspiel, O.: The K–L reactor model for circulating fluidized beds. Powder Technol. 55, 4563–4570 (2000)

    Google Scholar 

  5. Bai, D., Kato, K.: Quantitative estimation of solids holdups at dense and dilute regions of circulating fluidized beds. Powder Technol. 10, 183–190 (1999)

    Article  Google Scholar 

  6. Zhu, H., Zhu, J.: Characterization of fluidization behaviour in the bottom region of CFB risers. Chem. Eng. J. 141, 169–179 (2008)

    Article  Google Scholar 

  7. Xu, J., Zhu, J.: Effects of particle properties on flow structure in a 2-D circulating fluidized bed: solids concentration distribution and flow development. Chem. Eng. Sci. 66, 5064–5076 (2011)

    Article  ADS  Google Scholar 

  8. Schlichthaerle, P., Werther, J.: Axial pressure profiles and solids concentration distributions in the CFB bottom zone. Chem. Eng. Sci. 54, 5485–5493 (1999)

    Article  Google Scholar 

  9. Johansson, A., Johnsson, F., Leckner, B.: Solids back-mixing in CFB boilers. Chem. Eng. Sci. 62, 561–573 (2007)

    Article  Google Scholar 

  10. Wang, D., You, J., Zhu, C.: Modeling of core flow in a gas–solids riser. Powder Technol. 199, 13–22 (2010)

    Article  Google Scholar 

  11. Zhu, C., You, J.: An energy-based model of gas–solid transport in a riser. Powder Technol. 175, 33–42 (2007)

  12. Louge, M., Chang, H.: Pressure and voidage gradients in vertical gas–solid risers. Powder Technol. 60, 197–201 (1990)

    Article  Google Scholar 

  13. Pugsley, T.S., Berruti, F.: A predictive hydrodynamic model for circulating fluidized bed risers. Powder Technol. 89, 57–69 (1996)

    Article  Google Scholar 

  14. Breault, R.W., Panday, R., Shadle, L.J., Cocco, R., Issangya, A., Reddy Karri, S.B., Knowlton, T.M., Guenther, C.: Preface. Powder Technol. 203, 1–2 (2010)

  15. Collado, F.J.: Hyperbolic conservation laws for continuous two-phase flow without mass exchange. Comput. Math. Appl. 67, 1622–1630 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tong, D.: Lectures on dynamics and relativity. http://www.damtp.cam.ac.uk/user/tong/relativity.html (2016). Accessed on July 8 2016

  17. Crowe, C.T., Elger, D.F., Roberson, J.A.: Engineering Fluid Mechanics, 8th edn. Wiley, Hoboken (2005)

    Google Scholar 

  18. Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Guo, Q., Werther, J.: Influence of a gas maldistribution of the distributor design on the hydrodynamics of a CFB riser. Chem. Eng. Process. 47, 237–244 (2008)

    Article  Google Scholar 

  20. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58, 63–70 (1989)

    Article  Google Scholar 

  21. You, J., Patel, R., Wang, D., Zhu, C.: Role of inter-particle collision on solids acceleration in riser. Particuology 8, 13–18 (2010)

    Article  Google Scholar 

  22. He, P., Zhu, C., Ho, T.C.: A two-zone model for fluid catalytic cracking riser with multiple feed injectors. AIChE J. 42, 1875–1888 (2015)

    Google Scholar 

  23. Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation. Part 1. Trans. Inst. Chem. Eng. 32, 35–53 (1954)

    Google Scholar 

  24. Sanchez, R.A., Jakobsen, H.A.: Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop. Particuology 15, 116–128 (2014)

    Article  Google Scholar 

  25. Sanchez, R.A., Solsvik, J., Jakobsen, H.A.: Modeling and simulation of cold flow fluidized bed reactors. Energy Procedia 26, 22–30 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Collado.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collado, F.J. New one-dimensional hydrodynamics of circulating fluidized bed risers. Granular Matter 18, 78 (2016). https://doi.org/10.1007/s10035-016-0674-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0674-5

Keywords

Navigation