Skip to main content
Log in

Tensile stress relaxation in unsaturated granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanics of granular media at low liquid saturation levels remain poorly understood. Macroscopic mechanical properties are affected by microscale forces and processes, such as capillary forces, inter-particle friction, liquid flows, and particle movements. An improved understanding of these microscale mechanisms is important for a range of industrial applications and natural phenomena (e.g. landslides). This study focuses on the transient evolution of the tensile stress of unsaturated granular media under extension. Experimental results suggest that the stress state of the material evolves even after cessation of sample extension. Moreover, we observe that the packing density strongly affects the efficiency of different processes that result in tensile stress relaxation. By comparing the observed relaxation time scales with published data, we conclude that tensile stress relaxation is governed by particle rearrangement and fluid redistribution. An increased packing density inhibits particle rearrangement and only leaves fluid redistribution as the major process that governs tensile stress relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Carr, J.F.: Tensile strength of granular materials. Nature 213(5081), 1158–1159 (1967)

    Article  ADS  Google Scholar 

  2. Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16, 492–505 (1926)

    Article  Google Scholar 

  3. François, D., Pineau, A., Zaoui, A.: Mechanical Behaviour of Materials. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  4. German, R.M.: Coordination number changes during powder densification. Powder Technol. 253, 368–376 (2014)

    Article  Google Scholar 

  5. Haines, W.B.: Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci. 15, 529–535 (1925)

    Article  Google Scholar 

  6. Hartley, R.R., Behringer, R.P.: Logarithmic rate dependence of force networks in sheared granular materials. Nature 421(6926), 928–931 (2003)

    Article  ADS  Google Scholar 

  7. Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)

    Article  ADS  Google Scholar 

  8. Hornbaker, D.J., Albert, R., Albert, I., Barabási, A.L., Schiffer, P.: What keeps sandcastles standing? Nature 387, 765 (1997)

    Article  ADS  Google Scholar 

  9. Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117(12), 3–39 (2001)

    Article  Google Scholar 

  10. Kim, T.H., Hwang, C.: Modeling of tensile strength on moist granular earth material at low water content. Eng. Geol. 69(34), 233–244 (2003)

    Article  Google Scholar 

  11. Kohonen, M.M., Geromichalos, D., Scheel, M., Schier, C., Herminghaus, S.: On capillary bridges in wet granular materials. Phys. A Stat. Mech. Appl. 339(12), 7–15 (2004)

    Article  Google Scholar 

  12. Kohonen, M.M., Maeda, N., Christenson, H.K.: Kinetics of capillary condensation in a nanoscale pore. Phys. Rev. Lett. 82, 4667–4670 (1999)

    Article  ADS  Google Scholar 

  13. Kristensen, H., Holm, P., Schaefer, T.: Mechanical properties of moist agglomerates in relation to granulation mechanisms part II. Effects of particle size distribution. Powder Technol. 44(3), 239–247 (1985)

    Article  Google Scholar 

  14. Labajos-Broncano, L., Antequera-Barroso, J., González-Martín, M., Bruque, J.: An experimental study about the imbibition of aqueous solutions of low concentration of a non-adsorbable surfactant in a hydrophilic porous medium. J. Colloid Interface Sci. 301(1), 323–328 (2006)

  15. Lambert, P., Chau, A., Delchambre, A., Régnier, S.: Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008)

    Article  Google Scholar 

  16. Lian, G., Seville, J.: The capillary bridge between two spheres: new closed-form equations in a two century old problem. Adv. Colloid Interface Sci. 227, 53–62 (2016)

    Article  Google Scholar 

  17. Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)

    Article  Google Scholar 

  18. Lu, N., Wu, B., Tan, C.: Tensile strength characteristics of unsaturated sands. J. Geotech. Geoenviron. Eng. 133(2), 144–154 (2007)

    Article  Google Scholar 

  19. Mani, R., Kadau, D., Herrmann, H.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013)

    Article  Google Scholar 

  20. Mani, R., Kadau, D., Or, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109, 248001 (2012)

    Article  ADS  Google Scholar 

  21. Mani, R., Semprebon, C., Kadau, D., Herrmann, H.J., Brinkmann, M., Herminghaus, S.: Role of contact-angle hysteresis for fluid transport in wet granular matter. Phys. Rev. E 91, 042204 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)

    Article  ADS  Google Scholar 

  23. Pierrat, P., Agrawal, D.K., Caram, H.S.: Effect of moisture on the yield locus of granular materials: theory of shift. Powder Technol. 99(3), 220–227 (1998)

    Article  Google Scholar 

  24. Pierrat, P., Caram, H.S.: Tensile strength of wet granula materials. Powder Technol. 91(2), 83–93 (1997)

    Article  Google Scholar 

  25. Rumpf, H.: Agglomeration, pp. 379–418. Interscience, New York (1962)

    Google Scholar 

  26. Scheel, M.: Experimental Investigations of the Mechanical Properties of Wet Granular Matter. Ph.D. thesis, Georg-August-Universität Göttingen (2009)

  27. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7(3), 189–193 (2008)

    Article  ADS  Google Scholar 

  28. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Herminghaus, S.: Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime. J. Phys. Condens. Matter 20(49), 494,236 (2008)

    Article  Google Scholar 

  29. Schiffer, P.: A bridge to sandpile stability. Nat. Phys. 1, 21–22 (2005)

    Article  Google Scholar 

  30. Schubert, H., Herrmann, W., Rumpf, H.: Deformation behaviour of agglomerates under tensile stress. Powder Technol. 11(2), 121–131 (1975)

    Article  Google Scholar 

  31. Seemann, R., Mönch, W., Herminghaus, S.: Liquid flow in wetting layers on rough substrates. Europhys. Lett. 55, 698–704 (2001)

    Article  ADS  Google Scholar 

  32. Takenaka, H., Kawashima, Y., Hishida, J.: The effects of interfacial physical properties on the cohesive forces of moist powder in air and in liquid. Chem. Pharm. Bull. 29(9), 2653–2660 (1981)

    Article  Google Scholar 

  33. Turba, E., Rumpf, H.: Zugfestigkeit von preßlingen mit vorwiegender bindung durch van der waals-kräfte und ihre beeinflussung durch adsorptionsschichten. Chem. Ing. Tech. 36(3), 230–240 (1964)

    Article  Google Scholar 

  34. Utter, B., Behringer, R.: Transients in sheared granular matter. Euro. Phys. J. E 14(4), 373–380 (2004)

    Article  Google Scholar 

  35. Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the European Research Council (ERC) Advanced Grant Nos. 319968 FlowCCS. The technical assistance of Daniel Breitenstein in constructing the experimental apparatus is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Bianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, F., Thielmann, M., Mani, R. et al. Tensile stress relaxation in unsaturated granular materials. Granular Matter 18, 75 (2016). https://doi.org/10.1007/s10035-016-0673-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0673-6

Keywords

Navigation