Cylindrical sand pile formation in spinning vertical container partially filled with water

Abstract

Within the scope of this study we report the formation of a cylindrical sand pile in a container rotating around a vertical axis. A steady stream of dry sand is poured off-rotation-axis in a cylindrical acrylic glass container, which is partially filled with water. Due to the centrifugal force at a certain angular velocity, water forms a truncated parabolic, which leaves the center part of the container base empty, and as the sand particles accumulate on the dry base, a cylindrical pile is formed with a parabolic pit at the top. The vertically growing cylindrical sand pile is more stable with small grains than with big sand particles. The mechanical stabilization of the cylindrical sand pile is achieved by the equilibration of the capillary forces and the resulting negative Laplace pressure of the soaked up water inside the pile. The essential features of the phenomenon are discussed and its robustness is demonstrated with experiments by varying the experimental boundary conditions and sand type.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Newey, M., Ozik, J.: Band-in-band segregation of multi-disperse granular mixtures. Granul. Matter. 14–2, 185–190 (2012)

    Google Scholar 

  2. 2.

    Herrmann, H.J., Flekkøy, E., Nagel, K., Peng, G., Ristow, G.: Non-linearity and breakdown in soft condensed matter. Springer, Berlin (1994)

    Google Scholar 

  3. 3.

    Nicolas, M., Chomaz, J.M., Vallet, D., Guazzelli, E.: Experimental investigations of the nature of the first wavy instability in liquid-fluidized beds. Phys. Fluids A 8, 1987–1989 (1996)

    ADS  Article  Google Scholar 

  4. 4.

    Luding, S., Duran, J., Mazozi, T., Clement, E., Rajchenbach, J.: Simulation of granular flow: cracks in a falling sandpile. World Scientic, Singapur (1996)

    Google Scholar 

  5. 5.

    Forterre, Y., Pouliquen, O.: Longitudinal vortices in granular flows. Phys. Rev. Lett. 86, 26 (2001)

    Article  MATH  Google Scholar 

  6. 6.

    Altshuler, E., Ramos, O., Martinez, E., Batista-Leyva, A.J., Rivera, A., Bassler, K.E.: Sandpile formation by revolving rivers. Phys. Rev. Lett. 91, 1 (2003)

    Article  Google Scholar 

  7. 7.

    Pouliquen, O., Belzons, M., Nicolas, M.: Fluctuating particle motion during shear induced granular compaction. Phys. Rev. Lett. 91, 1 (2003)

    Article  Google Scholar 

  8. 8.

    Martinez, E., Prez-Penichet, C., Sotolongo-Costa, O., Ramos, O., Maløy, K.J., Douady, S., Altshuler, E.: Up-hill solitary waves in granular flows. Phys. Rev. E 75, 025703 (2007)

    Article  Google Scholar 

  9. 9.

    Shinbrot, T., Khakhar, D., McCarthy, J.J., Ottino, J.M.: The role of voids in granular convection. Phys. Rev. Lett. 55, 6121–6133 (1997)

    ADS  Google Scholar 

  10. 10.

    Desmond, K., Franklin, : Jamming of three-dimensional prolate granular materials. Phys. Rev. E 73, 031306 (2006)

  11. 11.

    Aranson, I.S., Malloggi, F., Clement, E.: Transverse instability of avalanches in granular flows down an Incline. Phys. Rev. E 73, 050302 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    Chaiworn, P., Fang, F., Chung, S.L., Wang, C.: Brazil nut effect in annular containers. Granular Matter 13, 050302 (2011)

    Article  Google Scholar 

  13. 13.

    Jaeger, H.M., Nagel, S.R.: Granul. Sol. Liquids, and gases, reviews of modern physics 68, 79384 (1996)

    Google Scholar 

  14. 14.

    Gera, D., O’Brien, T., Syamlal, M.: Hydrodynamics of particle segregation in fluidized beds. Int. J. Multiphase Flow 30, 419 (2004)

    Article  MATH  Google Scholar 

  15. 15.

    Savage, S.B.: Disorder and granular media. North-Holland, Amsterdam (1993)

    Google Scholar 

  16. 16.

    Baxter, G.W., Yeung, C.: The rotating bucket of sand: experiment and theory. Chaos 9–3, 631 (1999)

    ADS  Article  MATH  Google Scholar 

  17. 17.

    Zamankhan, P.: Air-grain interfaces in spinning granular films at high rotation rates. Europhys. Lett. 66, 205 (2004)

    Article  Google Scholar 

  18. 18.

    Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E 75, 031301 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    Taberlet, N., Richard, P.: Diffusion of a granular pulse in a rotating drum. Phys. Rev. E 73, 041301 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    Schlichtingand, H., Gersten, K.: Boundary-layer theory. McGraw-Hill, New York (2000)

    Google Scholar 

  21. 21.

    Valentine, D.T., Jahnke, C.C.: Flows induced in a cylinder with both end walls rotating. Phys. Fluids 6, 2702 (1994)

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Craig, R.F.: Soil mechanics. VanNostrand Reinhold Co Ltd, New York (1974)

  23. 23.

    Scott, R.F.: Principle of soil mechanics. Addison-Wesley publishing comp Inc, New York (1963)

  24. 24.

    Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbachand, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 89–193 (2008)

    Article  Google Scholar 

  25. 25.

    Bishop, A.,W.: The measurement of pore pressure in the triaxial test. In: Prec. Conference on Pore Pressure and Suction Soils: Butterworths, London, pp. 52–60 (1960a)

Download references

Acknowledgments

This work was supported by the BU Reasearch Fund under the project number 08B301. We would like to thank to Osman Börekci, Muhittin Mungan, Mehmet Erbudak, Özer Çinicioğlu and Cem Yolcu for their contributions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Selin Manukyan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manukyan, S., Sauer, H.M., Pekkendir, S. et al. Cylindrical sand pile formation in spinning vertical container partially filled with water. Granular Matter 18, 44 (2016). https://doi.org/10.1007/s10035-016-0653-x

Download citation

Keywords

  • Granular agglomeration
  • Conglomeration
  • Vertical rotational movement