Granular Matter

, 18:28 | Cite as

Jammed architectural structures: towards large-scale reversible construction

  • Petrus Aejmelaeus-Lindström
  • Jan Willmann
  • Skylar Tibbits
  • Fabio Gramazio
  • Matthias Kohler
Original Paper
Part of the following topical collections:
  1. Jamming-Based Aleatory Architectures

Abstract

This paper takes a first step in characterizing a novel field of research—jammed architectural structures—where load-bearing architectural structures are automatically aggregated from bulk material. Initiated by the group of Gramazio Kohler Research at ETH Zürich and the Self-Assembly Lab at Massachusetts Institute of Technology, this digital fabrication approach fosters a combination of cutting-edge robotic fabrication technology and low-grade building material, shifting the focus from precise assembly of known parts towards controlled aggregation of granular material such as gravel or rocks. Since the structures in this process are produced without additional formwork, are fully reversible, and are produced from local or recycled materials, this pursuit offers a radical new approach to sustainable, economical and structurally sound building construction. The resulting morphologies allow for a convergence of novel aesthetic and structural capabilities, enabling a locally differentiated aggregation of material under digital guidance, and featuring high geometrical flexibility and minimal material waste. This paper considers (1) fundamental research parameters such as design computation and fabrication methods, (2) first results of physical experimentation, and (3) the architectural implications of this research for a unified, material-driven digital design and fabrication process. Full-scale experimentation demonstrates that it is possible to erect building-sized structures that are larger than the work-envelope of the digital fabrication setup.

Keywords

Architectural research Computational design Robotic fabrication Jammed structures  Granular construction Additive manufacturing 

References

  1. 1.
    Gramazio, F., Kohler, M., Willmann, J.: The Robotic Touch: How Robots Change Architecture, pp.250–259, 478–481. Park Books, Zürich (2014)Google Scholar
  2. 2.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture, pp. 94–101. Lars Mueller Publishers, Baden (2008)Google Scholar
  3. 3.
    Liu, A.J., Nagel, S.R.: Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. Taylor & Francis, London (2001)Google Scholar
  4. 4.
    Song, C., Wang, P., Makse, M.A.: A phase diagram for jammed matter. Nature 453, 629–632 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Gramazio Kohler Research, Chair of Architecture and Digital Fabrication, ETH Zürich. http://www.gramaziokohler.arch.ethz.ch (2015). Accessed 31 Aug 2015
  6. 6.
    Self-Assembly Lab, MIT Boston. http://www.selfassemblylab.net (2015). Accessed 31 Aug 2015
  7. 7.
    Bock, T., Linner, T., Lauer, W., Eibisch, N.: Automatisierung und Robotik im Bauen, pp. 34–39. Archplus 198/199 (2010)Google Scholar
  8. 8.
    Andres, J., Bock, T., Gebhart, F.: First results of the development of the masonry robot system ROCCO: a Fault Tolerant Assembly Tool. In: 11th International Symposium on Automation and Robotics in Construction (ISARC), pp. 87–93. Brighton (1994)Google Scholar
  9. 9.
    Pritschow, G., Dalacker, M., Kurz, J., Zeiher, J.: A mobile robot for on-site construction of masonry. In: IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS), pp. 1701–1707. München (1994)Google Scholar
  10. 10.
    Bonwetsch, T., Gramazio, F., Kohler, M.: Towards a bespoke building process. In: Sheil, B. (ed.) Manufacturing the Bespoke, pp. 78–87. Wiley, Chichester (2012)Google Scholar
  11. 11.
    Schodek, D., Bechthold, M., Griggs, K., Kao, K., Steinberg, M.: Digital Design and Manufacturing: Applications in Architecture and Design. Wiley, Hoboken (2008)Google Scholar
  12. 12.
    Ficca, J.: Inclusion of performative surfaces material and fabrication research. In: Iwamoto, L. (ed.) Digital Fabrications: Architectural and Material Techniques. Princeton Architectural Press, New York (2009)Google Scholar
  13. 13.
    Menges, A., Schwinn, T.: Manufacturing reciprocities. Archit. Des. 82(2), 118–125 (2012)Google Scholar
  14. 14.
    Keating, S., Oxman, N.: Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robot. Comput. Integr. Manuf. 29, 439–448 (2013)CrossRefGoogle Scholar
  15. 15.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture, pp. 7–11. Lars Müller Publishers, Baden (2008)Google Scholar
  16. 16.
    Willmann, J., Gramazio, F., Kohler, M., Langenberg, S.: Digital by material: envisioning an extended performative materiality in the digital age of architecture. In: Brell-Cokcan, S., Braumann, J. (eds.) Robotic Fabrication in Architecture, Art, and Design, pp. 12–27. Springer, Wien (2012)Google Scholar
  17. 17.
    Bonwetsch, T.: Robotically assembled brickwork: manipulating assembly processes of discrete elements. Ph.D. Dissertation. ETH, Zürich (2015)Google Scholar
  18. 18.
    Dierichs, K., Menges, A.: Simulation of aggregate structures in architecture: distinct-elelement modeling of synthetic non-convex granulates. In: Block, P., Knippers, J., Mitra, N., Wang, W. (eds.) Advances in Architectural Geometry 2014, pp. 1–13. Springer, Cham (2015)Google Scholar
  19. 19.
    Willmann, J., Kohler, M., Gramazio, F.: Die Operationalität von Daten und Material im Digitalen Zeitalter. In: Hofmeister, S., Hellstern, C. (eds.) Positionen zur Zukunft des Bauens: Methoden, Ziele, Ausblicke, p. 619. Edition DETAIL/Institut für Internationale Architektur-Dokumentation, München (2011)Google Scholar
  20. 20.
    Sanches, J.: Gamescapes. In: Beesley, P., Kahn, O., Stacey, M. (eds.) Proceedings of ACADIA 2013 Adaptive Architecture, pp. 207–216. Riverside Architectural Press/ABC Art Books Canada, Ontario (2013)Google Scholar
  21. 21.
    Nof, S.Y., Rajan, C.N.: Robotics, in Handbook of Design, Manufacturing and Automation. Wiley, London (2007)Google Scholar
  22. 22.
    Dunn, N.: Digital Fabrication in Architecture, pp. 26–39. Lawrence King Publishers, London (2012)Google Scholar
  23. 23.
    Oxman, N.: Structuring materiality: design fabrication of heterogeneous materials. Archit. Des. 80(4), 78–85 (2010)Google Scholar
  24. 24.
    Dierichs, K., Menges, A.: Aggregate structures: material and machine computation of designed granular substances. Archit. Des. 82(2), 74–81 (2012)Google Scholar
  25. 25.
    Tibbits, S., Falvello, A.: Biomolecular, chiral and irregular self-assemblies. In: Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), pp. 267–268. Waterloo (2013)Google Scholar
  26. 26.
    Tibbits, S.: 4D printing: multi-material shape change. Archit. Des. 84(1), 116–121 (2014)Google Scholar
  27. 27.
    Menges, A.: Integration aus Form, Material und Struktur: Computerbasierte Morphogenese in der Architektur. In: Leopold, C. (ed.) Über Form und Struktur Geometrie in Gestaltungsprozessen, pp. 32–48. Springer/Vieweg, Heidelberg (2014)Google Scholar
  28. 28.
    Yoshida, H., Igarashi, T., Obuchi, Y., Takami, Y., Sato, J., Araki, M., Miki, M., Nagata, K., Sakai, K., Igarashi, S.: Architecture-scale human-assisted additive manufacturing. ACM Trans. Graph. 34(4), Article 88, SIGGRAPH (2015)Google Scholar
  29. 29.
    Gramazio, F., Kohler, M., Budig, M.: The tectonics of 3D printed architecture. Gazette 19. FCL Future Cities Laboratory, Singapore (2013)Google Scholar
  30. 30.
    Chryssolouris, G.: Manufacturing systems: theory and practice, p. 165. Springer, New York (2005)Google Scholar
  31. 31.
    Lloret-Kristensen, E., Langenberg, S., Gramazio, F., Kohler, M.: Complex concrete constructions merging existing casting techniques with digital fabrication. In: Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia, vol. 232, pp. 613–622. CAADRIA, Hong Kong (2013)Google Scholar
  32. 32.
    UniversalRobotsUR5. http://www.universal-robots.com/products/ur5-robot/ (2015). Accessed 31 Aug 2015
  33. 33.
    Volker, H., Ercan, S., Gramazio; F., Kohler, M.: Mobile robotic fabrication on construction sites: DimRob. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4335–4341. Vilamoura (2012)Google Scholar
  34. 34.
    Rhinoceros 3D (McNeel). https://www.rhino3d.com/ (2015). Accessed 31 Aug 2015
  35. 35.
    Carlo AG. http://www.carloag.ch/shop/andeer-510.html (2015). Accessed 31 Aug 2015
  36. 36.
    Cohen, D.L., Lipson, H.: Geometric feedback control of discrete-deposition SFF systems. Rapid Prototyp. J. 16(5), 377–393 (2010)CrossRefGoogle Scholar
  37. 37.
    Barnett, E., Angeles, J., Pasini, D., Sijpkes, P.: Surface mapping feedback for robot-assisted rapid prototyping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Shanghai (2011)Google Scholar
  38. 38.
    Dörfler, K., Sebastian, E., Luka, P., Willmann, J., Helm, V., Gramazio, F., Kohler, M.: Remote material deposition: exploration of reciprocal digital and material computational capacities. In: Voyatzaki, M. (ed.) What’s the Matter: Materiality and Materialism at the Age of Computation, pp. 361–377. New Braunfels, Barcelona (2014)Google Scholar
  39. 39.
    Helm, V.: In-situ-Fabrikation: Neue Potentiale roboterbasierter Bauprozesse auf der Baustelle. Ph.D. Dissertation. Kunsthochschule für Medien, Köln (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chair of Architecture and Digital FabricationDepartment of Architecture, ETH ZürichZürichSwitzerland
  2. 2.Self-Assembly LabMITCambridgeUSA

Personalised recommendations